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I. EXTRACTION OF THE CIRCUIT’S ELECTRICAL PARAMETERS

The electrical parameters given in the main text of the letter were obtained by numerical

simulations as well as fit of the measured quality factor as a function of the resonant fre-

quency (insets of Fig. 3 (a)). Each of the resonators of our device is modeled by the circuit

shown in Fig. 1 constituted by a 50 Ω transmission line and an LC resonator. For a (resp.

b), the impedance Za(b) of the LC resonator as seen from the transmission line is given by:

Za(b) =
j
(
L
a(b)
ex + LJ/2

)
ω ×

(
L
a(b)
stray − 1/

(
C

a(b)
res ω2

))
L
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(
C
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whose pole gives the resonant frequency ωa(b) = 1√(
L
a(b)
ex +LJ/2+L

a(b)
stray

)
×Cb

res

. From Za(b), the

reflection coefficient of a signal sent in the transmission line and reflected on the resonator

can be expressed as

ra(b) =
Z − Zc

Z + Zc

,

where Zc is the characteristic impedance of the transmission line and equal to 50 Ω. Near

ω ≈ ωa(b), this expression may be written

ra(b) =
ω2 − ω2

a(b) − jωωa(b)/Qa(b)

ω2 − ω2
a(b) + jωωa(b)/Qa(b)

,

where Qa(b) is the quality factor. The latter depends on the resonant frequency through the

equation

Qa(b) =
ZcC

a(b)
res ωa(b)(

1 − L
a(b)
strayC

a(b)
res ωa(b)

) . (1)

Thanks to parameters obtained from the full 3D simulations of the whole device (see

main text), we used Eq. 1 to fit experimental data of the insets of Fig. 3 (a) and deduce

the stray inductances of the capacitors of resonators a and b. Our best fits are obtained for

La
res = 75 pH and Lb

res = 51 pH.

II. CALIBRATION USING THE DEPENDENCE OF RESONANT

FREQUENCY ON INPUT POWER

In the main text of the letter, we have evaluated the efficiency of the Josephson amplifier

thanks to a calibration of the input and output lines of our setup. We obtain it taking
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FIG. 1. Electrical model describing resonator b of the Josephson ring including parasitic geometric

inductances Lb
ex and Lb

stray.

FIG. 2. Simulated circuit for the calibration of our setup.

advantage of the shift of the resonant frequency while sweeping Pin. For this, we have

measured the resonant frequency of mode a as a function of the power delivered by our

vector network analyzer (VNA) and have compared our measurements to a full numerical

simulation of the device. This way, we can deduce the corresponding actual Pin at the level

of the device for a given power injected at the input of our setup. The non-linearity of our

device is so high that we have to take into account higher orders terms, we thus don’t only

consider the lowest order Kerr term (a†a)2 coming from the development in series of cos(ϕJ)

as it is usually done, but we take into account terms to all order by keeping the full cosine.

The circuit that we simulated is shown in Fig. 2, a 50 Ω resistor models the dissipation

due to losses of the resonator into the 50 Ω transmission line, and the microwave source of

the VNA is modeled by an ac voltage source supplying a power Pin = V 2
0 /4R. Applying

Kirchoff’s law, one can show that it obeys the following set of coupled equations:

U ′C(t)

ϕ0

+
ϕ′J(t)

RCa
res

+
Ic

ϕ0Ca
res

sin (ϕJ(t)) +
La
exIc

ϕ0RCa
res

ϕ′J(t) cos(ϕJ(t)) =
V0 cos(2πft)

ϕ0RCa
res

(2)
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FIG. 3. Calculated response of the circuit of Fig. 2 using the electrical parameters of section I and

for ϕext = 0.645×π/2. The amplitude VJ0 of the voltage across the Josephson junction (normalized

by the amplitude of the excitation V0) is plotted as a function of the frequency f of the excitation

for increasing V0 from red to yellow. At low V0, it appears as a Lorentzian function centered on

the resonant frequency of resonator a. The latter shifts toward lower frequency for increasing V0,

then the Lorentzian function becomes asymmetric and bends in direction of the lower frequency

until the circuit becomes bistable and a discontinuity appears on the left side of the Lorentzian.

La
strayC

a
resU

′′
C(t) + UC(t) = ϕ0ϕ

′
J(t) + La

exIcϕ
′
J(t) cos (ϕJ(t)) . (3)

Here UC the voltage across the capacitor, ϕ0 is the flux quantum, ϕJ is the phase across

the Josephson junction and Ic is the critical current of the junction with

Ic =
2ϕ0

LJ

sin (ϕext) , (4)

where ϕext = Φ/4ϕ0, Φ being the flux threading the loop of the Josephson ring.

We numerically solved the set of Eq. 2 and 3 as a function of the time t with the initial

condition UC(0) = 0, ϕJ(0) = 0, U ′C(0) = 0 and using the electrical parameters of section

I. For a given amplitude V0, frequency of excitation f and after a transient regime of a few

nanoseconds, the voltage across the junction VJ(t) = ϕ0ϕ
′
J(t) behaves as a periodic function

whose amplitude VJ0 is maximal when f matches the resonant frequency of the circuit.

Fig. 3 shows the responses of the circuit for increasing V0 and it is clear that the resonant

frequency moves toward lower frequency. At high values of V0, we observe as expected

that the resonator becomes bistable which induces a discontinuity of the amplitude when

sweeping the frequency. Comparing the results of this simulation with our experimental

measurements as we did in Fig. 4 a of the main text, we were able to deduce an attenuation

in the input line of approximately 86.5 dB.
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FIG. 4. Schematic of the experimental setup. Normal Modes are addressed in reflection through

two 180o hybrid couplers, all input lines being filtered and attenuated (partially shown). Output

signals are separated from input signals by a directional coupler and amplified by a low noise

HEMT amplifier at the 4K stage (following room temperature amplifiers chain not shown). For

the added noise calibration, a switch connects input of port b to either vacuum noise from a 50 Ω

load at Tdil, either thermal noise of a thermally isolated 50 Ω load of variable temperature Tns.

III. NOISE CALIBRATION WITH THERMAL NOISE

On top of the calibration of the added noise presented in the main text, the amplifier

added noise has also been evaluated by connecting port b to a 50 Ω load with a tunable

temperature Tns, thermally isolated from the rest of the circuit. The output noise density

SON (resp. SOFF ) is recorded while the Josephson amplifier is turned on (resp. off). The

frequency of the pump is 12.16 GHz and the power is chosen such that the gain reaches

approximately 32 dB when the amplifier is on.

The measurement setup is sketched in Fig. 5. Two beamsplitters with 1/4 transmis-

sion represents the 6 dB attenuator and another one, at the input of the amplifier, with

transmission η models the efficiency of the device.

When the amplifier is off (i.e. pump is off), the noise measured by the spectrum analyzer

is given by

SOFF = SLNA +GLNA

[
3

4
Sout
dil +

1

4
(
η

4
Sns + (1 − η

4
)Sin

dil)

]
, (5)
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FIG. 5. Schematic of the measurements for the noise calibration of our device using a 50 Ω source

of thermal noise. The 6 dB attenuator plugged at the input and output of the Josephson amplifier

are modeled as beamsplitters with 1/4 transmission while the internal losses of the device are

modeled with a η transmission beamsplitter. The 1/4 and η transmission beamsplitters combined

are equivalent to a single beamsplitter with η/4 transmission.

with SLNA the added noise of the HEMT amplifier at 4 K, GLNA its gain, Sout
dil (resp. Sin

dil)

the noise introduced by the 6 dB attenuator at the output (resp. input) of the Josephson

amplifier at the fridge temperature, and Sns is the noise emitted by 50 Ω load with variable

temperature Tns. At the base temperature of our fridge we have Sout
dil = Sin

dil = Sdil with

Sdil = 1/2 coth [hfb/2kBT ] (Sdil ≈ 1/2 since the temperature in the dilution fridge Tdil �

hfb/kB = 260 mK). Similarly, when the amplifier is on, the noise can be expressed as

SON = SLNA +GLNA

[
3

4
Sout
dil +

1

4
G(
η

4
Sns + (1 − η

4
)Sin

dil) +
1

4
(G− 1)Sdil

]
. (6)

The last term is due to the amplification of the zero point fluctuation of the a resonator, G

being the gain of the Josephson amplifier.

The difference between ON (Eq. 6) and OFF (Eq. 5) power spectral densities is given by

SON − SOFF

hfaG
=
ηGLNA

4

[
Sns

4
+

3

4
Sdil +

2 − η

η
Sdil

]
. (7)

The first term in Eq. 7 is the amplified signal coming from the noise source, the second

one is the total added noise introduced by the -6 dB attenuator, and the third one is the

added noise of the Josephson amplifier.

For a perfect device with η = 1, the added noise of the Josephson amplifier is half a

photon, while for a realistic amplifier there will be an extra noise noise equal to (1 − η)/η

photons. By fitting the measured spectral density of Fig. 6 as a function of Tns with Eq. 7,

we extract GLNA ≈ 62.3 dB and an efficiency η ≈ 0.62 which corresponds to an extra noise

of 0.6 photon, consistent with the other calibration on resonator a.
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FIG. 6. Difference between measured spectral densities out of resonator b, its input being connected

to the noise source, as a function of Tns when the pump is turned on (SON ) and when the pump is

turned off (SOFF ). The experimental data, appearing as blue dots, are normalized by the energy

of a quantum in resonator b and the gain G of the Josephson amplifier set to be approximately 32

dB. Continuous line: fit of these data using Eq. 7.
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