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MEASUREMENT SETUP

Pump and drive pulses are generated by modulation of continuous microwave tones produced by microwave gener-
ators set respectively at fa− fm + 70 MHz for the conversion pump, fa + fm + 100 MHz for the entangling pump and
fa+ 40 MHz for the input drive (see Fig. S1). The amplitude modulation shaping is performed by mixing these tones
with arbitrary shaped waveforms at 70, 100 and 40 MHz synthesized by a 4 channels Tektronix Arbitrary Waveform
Generator (AWG5014B). The FPGA board is an X6-RX by Innovative integration with 16-bit deep ADCs at 160
MSps. All clocks and triggers are carefully synchronized together.
Pump pulses and drive pulse are sent into the dilution refrigerator through separated input lines which are thermal-
ized, attenuated and filtered with cryogenic components at each stage ensuring that only negligible thermal excitations
enter the device . The pump lines are then recombined with a diplexer and sent to the sum port of the 180 degree
hybid coupler which distribute the field on the common mode of the Josephson Ring Modulator. The drive line is
sent to the differential port of the hybrid through the −20 dB port of a directional coupler.
The output signal is collected on the differential port of the 180-hybrid coupler is routed back towards a commercial
High Electron Mobility Transistor (HEMT) amplifier of 40 dB gain from Caltech University though two isolators
in series. The output signal is further amplified and filtered at room temperature, mixed down by the microwave
source at fa + 40 MHz, filtered and amplified on a 125MHz bandwidth FEMTO amplifier. The output signal is then
digitalized, demodulated and averaged in real time by the FPGA board on a 550 ns time window.
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Figure S1: Detailed measurement setup. The gray rectangles stand for microwave attenuators. The gray triangles are HEMT
amplifiers.

TUNABILITY AND PARTITIPATION RATIO

Tunability

The buffer and cavity modes can be modeled as LC resonators inductively coupled to the Josephson Ring Modulator
(JRM) (see Fig. S3). The Josephson ring modulator consists in a ring of four identical Josephson junctions threaded

by a magnetic flux Φext = ϕextϕ0. Then LJRM (ϕext) =
L0
J

cosϕ/4
with L0

J is the zero-flux inductance of the Josephson

junctions. The equivalent inductance of modes a and m is made of the JRM inductance LJRM (ϕext) in series with the
geometric inductance La,m. Consequently by varying the magnetic flux threading the JRM, we tune the frequency of
the resonator fa,m = (2π

√
(La,m + LJRM (ϕext))Ca,m)−1.

The experimental tunability of the buffer resonator is presented on the figure S2. The frequency is tunable over
800 MHz in the range fa = 8.8 GHz− 9.6 GHz. This tunablilty is stronger than in similar devices used for amplifica-
tion [1, 2] due to a lower critical current Ic = 1.1 µA of the junctions. Here, we want to maximize the participation
ratio even if it degrades the dynamical range. Note that in the context of a quantum memory, large dynamical ranges
are more easily achieved since the resonators don’t have to sustain high photon power as a consequence of the high
amplification gain.

Note that around ϕext ≈ 0.8π, we observe an anti-crossing in the resonance frequency of about 10 MHz. It is
certainly due to the coupling to a two level system (TLS) trapped in the oxide of one of the junction. The frequency
of the TLS is moving from one cool down to another.

On the other hand, the 3D cavity frequency is tunable over 200 kHz only. Indeed, the participation ratio of the
JRM in the total equivalent inductance of the 3D cavity is much smaller, the scaling factor being 0.2/800 = 2.5×10−4.
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Figure S2: Left panel: resonance frequency of the buffer mode fa as a function of reduced flux through the ringϕext. The
blue dots are measured with increasing field while the purple dots are measured with decreasing field. Right panel: Scaled
participation ratio of JRM in the buffer cavity ξacos(ϕext/4) as a function of ϕext inferred from Eq. (S3) using the measurement
in the left panel.

Stability

We can show that for flux bias ϕext > π, the JRM becomes metastable and can jump to another flux configuration
by accepting an extra flux quantum into the ring. This metastability presents a hysteric behavior, ramping the flux
up and down the jump from one configuration to another happen at a different flux bias as presented figure S2. Note
that for a good stability of the device, it is preferable to work at flux point away from half flux quantum ϕext = π.
In the present experiment we are working at ϕext ≈ 0.6π.

Participation ratios

We define the participation ratio ξa,m as the ratio of the zero-flux inductance of the Josephson Ring Modulator
(JRM) to the total inductance of the mode a (or m). For mode a,

ξ =
LJRM (ϕext)

Ltot(ϕext)
(S1)

where Ltot = La + LJRM (ϕext). We can show that relative variation of the resonance frequency fa is directly link to
the participation ratio. ∣∣∣∣ 1

fa

∂fa
∂ϕext

∣∣∣∣ =

∣∣∣∣ 1

2Ltot

∂Ltot
∂ϕext

∣∣∣∣ =
ξ0
8

tan(ϕext/4)

cos(ϕext/4)
(S2)

where ξ0 = LJRM (0)/Ltot(ϕext) is almost flux independent and is given by

ξ0 = 2
cos(ϕ/4)

tan(ϕ/4)

∣∣∣∣ 1f ∂f∂ϕ
∣∣∣∣ . (S3)

On Fig. S2, it can be seen that the right hand side of this equation is indeed almost independent on flux. Finally, we
get the following expression for the participation ratio

ξ(ϕext) =
2

tan(ϕext/4)

∣∣∣∣ 1f ∂f

∂ϕext

∣∣∣∣ . (S4)

As shown on figure S2, using this relation we just derived, we get a participation ratio for the buffer resonator of
ξa ≈ 0.35. We can estimate the participation ratio of the 3D cavity mode knowing the scaling factor between the
frequency ranges over which the buffer and the memory modes are tunable. We get ξm ≈ (0.2/800) 0.3 ≈ 10−4.
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CONSTRAINTS ON DEVICE PARAMETERS

Figure S3: Schematics of the equivalent circuit used in the model.

From the Kirchhoff laws, we can deduce the following relation between fluxes for both resonators a and m.


Φa = Φ̃a + ϕ0ϕa
Φ̃a
La

=
ϕ0ϕa
LJRM

=
ϕ0ϕa

LJ(ϕext)

(S5)


Φm = Φ̃m + ϕ0ϕm
Φ̃m
Lm

=
ϕ0ϕm
LJRM

=
ϕ0ϕm

LJ(ϕext)

(S6)

Thus,


ϕ0ϕa =

LJRM
La + LJRM

Φa ≡ ξa(ϕext)Φa

ϕ0ϕm =
LJRM

Lm + LJRM
Φm ≡ ξm(ϕext)Φm

(S7)


Φ̃a =

La
La + LJRM

Φa = (1− ξa(ϕext))Φa

Φ̃m =
Lm

Lm + LJRM
Φm = (1− ξm(ϕext))Φm

(S8)

The Josephson Hamiltonian for a single junction reads HJ = − ϕ2
0

L0
J

cosϕ where ϕ is the phase difference operator.
The full Hamiltonian of the JRM can then be rewritten as a function of the reduced fluxes ϕa = ϕ1−ϕ2, ϕm = ϕ3−ϕ4

and ϕp = ϕ1 + ϕ2 − ϕ3 − ϕ4 where ϕ1,2,3,4 are the flux of each node of the JRM [3]:
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H =
Q2
a

2Ca
+

Φ̃2
a

2La
+

Q2
m

2Cm
+

Φ̃2
m

2Lm
− 4

ϕ2
0

L0
J

(cos
ϕext

4
cos

ϕa
2

cos
ϕm
2

cos
ϕp
2

+ sin
ϕext

4
sin

ϕa
2

sin
ϕm
2

sin
ϕp
2

). (S9)

We then expand this Hamiltonian at the third order in ϕ

H =
Q2
a

2Ca
+

Φ̃2
a

2La
+

Q2
m

2Cm
+

Φ̃2
m

2Lm
+

ϕ2
0

2L0
J

cos
ϕext

4
(ϕ2
a + ϕ2

m + ϕ2
p)−

ϕ2
0

2L0
J

sin
ϕext

4
ϕaϕmϕp +O(ϕ3). (S10)

Using Eqs. (S7) and (S8), we can then express the full Hamiltonian as a function of the total fluxes Φa and Φm
and as a function of the participation ratio ξa and ξm.

H =
Q2
a

2Ca
+

Φ̃2
a

2La
+

Q2
m

2Cm
+

Φ̃2
m

2Lm
+

ϕ2
0

2LJ(ϕext)
(ϕ2
a + ϕ2

m + ϕ2
p)−

ϕ2
0

2L0
J

sin
ϕext

4
ϕaϕmϕp

=
Q2
a

2Ca
+

Φ2
a

2(La + LJ(ϕext))
+

Q2
m

2Cm
+

Φ2
m

2(Lm + LJ(ϕext))
− 1

2L0
J

LJ(ϕext)

La + LJ(ϕext)

LJ(ϕext)

Lm + LJ(ϕext)
sin

ϕext
4

ΦaΦmϕp

=
Q2
a

2Ca
+

Φ2
a

2(La + LJ(ϕext))
+

Q2
m

2Cm
+

Φ2
m

2(Lm + LJ(ϕext))
− 1

2L0
J

ξa(ϕext)ξm(ϕext) sin
ϕext

4
ΦaΦmϕp.

Finally, we can rewrite this Hamiltonian using the ladder operators ϕa =
√
~Za/2(a+a†) and ϕm =

√
~Zm/2(m+

m†) and ϕp = ϕpZPF (p+ p∗). Here Za,m =
√
La,m + LJ(ϕext)/

√
Ca,m and ωa,m = 1/

√
La,mCa,m + LJ(ϕext)Ca,m.

H = ~ωa(a†a+
1

2
) + ~ωm(m†m+

1

2
) (S11)

−~
2

ϕpZPF
2L0

J

ξa(ϕext)ξm(ϕext)
√
ZaZm(a+ a†)(m+m†)(p+ p∗) sin

ϕext
4
. (S12)

By identifying this Hamiltonian with the three-wave mixing Hamiltonian, we get the coupling term χ as function
of physical quantities of the circuit.

H = ~ωa(a†a+
1

2
) + ~ωm(m†m+

1

2
)− ~χ(a+ a†)(m+m†)(p+ p∗), (S13)

with

χ =
ϕpZPF
4L0

J

ξaξm sin
ϕext

4

√
ZaZm (S14)

=
ϕpZPF
4L0

J

ξaξm sin
ϕext

4

√
(La + LJ)(Lm + LJ)ωaωm (S15)

χ =
ϕpZPF

4
tan

ϕext
4

√
ξaξmωaωm. (S16)

The third order expansion of the Hamiltonian holds as long as the pump power is not too large. The constraint on
the pump amplitude is then:

ϕpZPF |p| = ϕp � 2π. (S17)

However, in order to reach the strong coupling regime, where the input/output rate γio reaches its maximum value,
we need:

1 <
2χ|p|
κa

(S18)
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By combining these two relations, we get the following constraint on the participation ratio the frequencies and the
coupling rate to the transmission line:

1� 4πχ

ϕpZPFκa
= π tan

ϕext
4

√
ξaξmωaωm

κa
(S19)

1� 2π2 tan
ϕext

4

√
ξaξmfafm
κa

(S20)

The constraint is satisfied in the physical implementation of the device.

2π2 tan
ϕext

4

√
ξaξmfafm
κa

= 2π2 tan(
π

2
0.3)

√
0.3× 10−4 × 9.4× 7.8

2π × 0.007× cos(π2 0.3)
≈ 12� 1 (S21)
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KERR EFFECT

The pump amplitude is varied in time to turn the memory on and off. It was therefore important to know by how
much the pump power affects the resonance frequency of the buffer and memory modes. This can be addressed using
the expressions for the Kerr effects associated with the Josephson Ring Modulator

Beyond third-order expansion: Kerr effect

Higher order non-linearities bring spurious effects.
In particular, the Kerr effect results from the fourth order non-linear term provided by the Josephson Ring Modu-

lator. Remarkably, it does not vanish in the rotating wave approximation (RWA) since only mode populations come
into play. The corresponding Hamiltonian is of the form

HKerr = ~Kaa(a†a)2 + ~Kmm(m†m)2 + ~Kama
†am†m+ ~Kap|p|2a†a+ ~Kmp|p|2m†m (S22)

Two types of terms appear, self-Kerr terms that involve only one mode to the fourth power and cross-Kerr terms
that couple the populations of two modes. The self-Kerr effect induces anharmonicity in the modes whereas the
cross-Kerr effect induces a linear shift of the resonance frequency of one mode depending on the population of the
other mode.

The Kerr terms can be easily derived from the Josephson Hamitonian involving fourth order of field operators.
Hence starting from the ring Hamiltonian, we get

HKerr = −EJ
16

cos
ϕ

4

[
ϕ2
aϕ

2
m + ϕ2

aϕ
2
p + ϕ2

mϕ
2
p +

ϕ4
a

24
+
ϕ4
m

24

]
= − cosϕ/4

16L0
Jϕ

2
0

[
~2

4
ZaZmξ

2
aξ

2
ba
†ab†b+

~
2
Zaξ

2
aϕ

2
pa
†a+

~
2
Zmξ

2
bϕ

2
pm
†b

+
~2

96
Z2
aξ

4
a(a†a)2 +

~2

96
Z2
mξ

4
m(m†m)2

] (S23)

The frequency shifts due to the pump tone read

Kap|p|2 = − 1

32
ωaξa|ϕp|2

LJRM (ϕext)

LJ(ϕext)

Kmp|p|2 = − 1

32
ωmξm|ϕp|2

LJRM (ϕext)

LJ(ϕext)

(S24)

In a way, these terms are harmless if the pump amplitude is kept constant. Indeed, they corresponds to a renormal-
ization of the resonance frequency.

The Kerr terms between a and m read

Kam = − 1

64

√
ξ5
aωa

Za
ZQ

√
ξ5
bωb

Zm
ZQ

LJRM (ϕext)

LJ(ϕext)

Kaa = − 1

1536
ξ5
aωa

Za
ZQ

LJRM (ϕext)

LJ(ϕext)

Kmm = − 1

1536
ξ5
mωm

Zm
ZQ

LJRM (ϕext)

LJ(ϕext)

(S25)

Note that the self-Kerr terms are much weaker than the cross-Kerr terms.

Measured Kerr effects

Importantly, the cross-Kerr effects involving the pump are dominant here. Indeed, we are probing the resonators
at low photon number (∼ 100), thus the self-Kerr terms (a†a)2 and (m†m)2 as well as the cross-Kerr term a†am†m
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are negligible compared to the cross-Kerr involving the pump that is strongly driven. The correction to the resonance
frequencies of mode a at rest is given by

Kap|p|2 =
1

32L0
J

cos
ϕ

4
Zaξ

2
a|ϕp|2

=
1

32
ωaξa|ϕp|2

(S26)
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Figure S4: Measured buffer resonance frequency as a function of pump power |p|2 in arbitrary unit (in the cool down corre-
sponding to Fig. 2 in the main text). The largest displayed pump power corresponds to the one used for catch and release in
Fig. 2. Note that the measurements performed during the second cool down at a different flux bias (for Figs 3 and 4 of the
main text) were taken with even larger Kerr nonlinearities.

As derived in the previous section, the strong coupling regime is reached for

χ|p| = ϕp
2

sin
ϕext

4

√
ξaξmωaωm ∼

κa
2

(S27)

Therefore, the frequency shift of the buffer mode induced by the pump in the strong coupling regime reads

Kap|p|2 ∼
1

(tan
ϕ

4
)2

κ2
a

2ξmωm
∼ κa
ξmQa

≈ 2π × 20 MHz (S28)

Similarly, the frequency shift induced by the pump on the memory mode m can be estimated to

Kmp|p|2 ∼
κm
ξaQm

< 2π × 1 kHz (S29)

Similarly to what is observed in the experiment, the Kerr frequency shift is negligible on the memory cavity.
The estimated value of the Kerr frequency shift is in good agreement with the one measured on the buffer mode a

and presented in S4. We observe a linear dependence with pump power and a shift of 20 MHz for the largest pump
powers in the strong coupling regime, which is the one used for Fig. 2 in the main text.
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QUANTUM LANGEVIN EQUATION

The quantum Langevin equation offers a convenient framework to study the interplay between the memory mode
m, the buffer mode a and the propagating mode ain and aout as a function of the pump amplitude p.

The quantum Langevin equation gives the evolution of electromagnetic modes coupled to propagating modes.{
∂a
∂t = i

~ [H, a]− κa
2 a+

√
κaain

∂m
∂t = i

~ [H,m]− κm
2 m+

√
κmmin

(S30)

In the conversion mode, the system Hamiltonian in the rotating wave approximation (ωp = ωa − ωm) reads

H = ~ωres
a a†a+ ~ωres

m m†m+ ~χ(p a†m+ p∗am†) (S31)

The interaction Hamiltonian couples linearly the two Langevin equation{
∂a
∂t = −iωres

a a− iχpm− κa
2 a+

√
κaain

∂m
∂t = −iωres

m m− iχp∗a− κm
2 m+

√
κmmin

(S32)

Here, as in the experiment we will discuss, we consider only a constant pump amplitude. Note that the following
expressions need to be modified in case of a varying pump amplitude.

One can write the Langevin equation in the frequency domain knowing that p(t) = p0e
−iωpt considering that

ωp = ωres
a − ωres

m {
0 = i(ωa − ωres

a + iκa2 )a[ωa]− iχp0m[ωm] +
√
κaain[ωa]

0 = i(ωm − ωres
m + iκm2 )m[ωm]− iχp∗0a[ωa] +

√
κmmin[ωm]

(S33)

From this equation, we can derive the quantum scattering relation between the input mode ain and min and the
cavity modes m and a.

m[ωm] =
i(χp0)∗

√
κa

(ωm − ωres
m + iκm/2)(ωa − ωres

a + iκa/2)− |χp0|2
ain[ωa]

+
i
√
κm(ωa − ωres

a + iκa/2)

(ωm − ωres
m + iκm/2)(ωa − ωres

a + iκa/2)− |χp0|2
min[ωm]

(S34)

a[ωa] =
i
√
κa(ωm − ωres

m + iκm/2)

(ωm − ωres
m + iκm/2)(ωa − ωres

a + iκa/2)− |χp0|2
ain[ωa]

+
i(χp0)∗

√
κa

(ωm − ωres
m + iκm/2)(ωa − ωres

a + iκa/2)− |χp0|2
min[ωa]

(S35)

We now define ∆ = ωa − ωres
a = ωm − ωres

m and we can eliminate the buffer mode a from these equations using the
input/output relation

√
κaa = ain + aout

Amplitude scattering coefficient

The losses of mode m can be modeled as propagating modes min/out evolving on an uncontrolled port then
〈min[ωm]〉 = 0. Thus, the scattering coefficients read

〈m[ωm]〉 =
iχp∗0
√
κa

(∆ + iκm/2)(∆ + iκa/2)− |χp0|2
〈ain[ωa]〉

〈m[ωm]〉 =
−iχp∗0

√
κa

(∆ + iκm/2)(∆− iκa/2)− |χp0|2
〈aout[ωa]〉

〈aout[ωa]〉 = − (∆ + iκm/2)(∆− iκa/2)− |χp0|2

(∆ + iκm/2)(∆ + iκa/2)− |χp0|2
〈ain[ωa]〉

(S36)

We can rewrite these equations such that the denominators are put under a factorized form.

〈m[ωm]〉 =
−4χp∗0

√
κa

(γai − 2i∆)(γmi − 2i∆)
〈ain[ωa]〉

〈m[ωm]〉 =
−4χp∗0

√
κa

(γao + 2i∆)(γmo + 2i∆)
〈aout[ωa]〉

〈aout[ωa]〉 = − (γao + 2i∆)(γmo + 2i∆)

(γai − 2i∆)(γmi − 2i∆)
〈ain[ωa]〉

(S37)
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Therefore, poles of the scattering coefficient are given by ±iγa/mi/o /2. The i/o labeling depends on whether the
scattering coefficient couples 〈m〉 to 〈ain〉 or 〈aout〉. The a/m labeling refers to the zero pump limit, γai/o → κa and
γmi/o → ±κm. This labeling will become clear when the temporal evolution of the fields will be considered.

Actually, the dynamical coupling rates between the propagating modes ain and aout and the memory mode m,
which occur through the buffer, is defined as

γmi =
κa + κm

2
−

√(
κa − κm

2

)2

− 4|χp0|2 (S38)

and

γmo =
κa − κm

2
−

√(
κa + κm

2

)2

− 4|χp0|2 (S39)

Similarly, the dynamical coupling rates between the propagating modes ain and aout and the buffer mode a are
defined as

γai =
κa + κm

2
+

√(
κa − κm

2

)2

− 4|χp0|2 (S40)

and

γao =
κa − κm

2
+

√(
κa + κm

2

)2

− 4|χp0|2 (S41)

DYNAMICAL COUPLING RATES

In the limit of a long-lived memory κa � κm, we can define the input/output coupling rate to the memory

γmio =
κa
2

[
1−

√
1− 16

|χp0|2

κ2
a

]
(S42)

such that[8]

γmi ≈ γmio + κm
γmo ≈ γmio − κm

(S43)

Besides, the input/output coupling rate to the buffer can be defined

γaio =
κa
2

[
1 +

√
1− 16

|χp0|2

κ2
a

]
(S44)

such that

γaio = κa − γmio ≈ γai ≈ γao (S45)

Limits on the coupling rates

We can decompose the two limits on the coupling rates

• For weak pump tone the coupling increases linearly with pump power

γmio (|χp0| � κa) =
4|χp0|2

κa
(S46)
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• For stronger pump tone |χp0| > κa/4, the system enters in the strong regime limit. The coupling rate χp0

exceeds the buffer exit rate κa/2, thus the two modes hybridize. The dynamical coupling rate becomes complex.

Its real part defines the effective coupling rate. It saturates to half the buffer escape rate

γmio (|χp0| > κa/4) =
κa
2

(S47)

Its imaginary part corresponds to the dispersive shift of resonance frequencies.

δωm± (|χp0| > κa/4) = Im(γ
a/m
io /2) = ±

√
|χp0|2 −

(κa
4

)2

(S48)

To put it simply, the conversion rate between modes at frequency ωa and ωm becomes large enough so that,
effectively, these two modes hybridize. The new resonant modes are combinations of the buffer and memory
modes, despite the frequency detuning between them. The strong coupling induces a splitting between the new
resonant modes, whose magnitude scales with the pump amplitude.

Effect of the antennas

The 3D cavity is capacitively coupled to the Jopsephson Ring Modulator through antennas. This capacitive coupling
κc placed in series with the conversion coupling |χp|, leads to an effective conversion rate between m and a given by

|χp0|2 ←
1

1

(κc/2)2
+

1

|χp0|2
(S49)

Hence, the effective coupling rate reads

γmio =
κa
2

1−
√√√√√1− 4

κ2
a

(
1

κ2
c

+
1

4|χp0|2

)
 (S50)

When the conversion rate is small compared to this capacitive coupling, the dynamical coupling is not modified

γmio (|χp| � κc) =
4|χp|2

κa
(S51)

However when the conversion rate overcomes the capacitive coupling, we observe a saturation of the dynamical
coupling rate due to the antennas. It is given by

γio(|χp| � κc) =
κa
2

1−

√
1−

(
2κc
κa

)2
 (S52)

DETERMINATION OF THE COUPLING TO THE ANTENNAS

The antenna coupling has been designed and tested with dedicated samples. These samples consisted in capacitive
pads directly connected to the input connectors as shown in Fig. S5. At room temperature, the 3D cavity was probed
in reflection (Fig. S5b) in a similar way that one would probe in reflection a two port λ/2 resonator as the buffer
resonator for instance (Fig. S5a). The measured reflection coefficient as a function of the frequency has enabled us
to extract the direct coupling rate κc between the 50 Ω microstrip line and the 3D cavity. Various shapes and sizes
of capacitive pads has been tested. We have selected the capacitive pads providing a capacitive coupling rate of
κc = 3 MHz . It corresponds to the geometry represented in Fig. S5b and detailed in Fig. S6c.
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chimneychimney ground
plane

capacitive
pad

(a)

(b)

microstrip

Figure S5: Capacitive couplings calibration (a) Setup for the reflection measurement of two ports λ/2 microstrip resonator. (b)
Setup for the reflection measurement of the 3D memory cavity for testing the capacitive pads of the antenna.
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Figure S6: (a) One half of the cavity is shown from the front side (lengths in mm). (b) A section of the two halves of the
cavity put together is shown from the side (lengths in mm). The cut is represented as a vertical, thick black line in the center.
(c) Drawing of the device used in e-beam lithography (lengths in microns). The two symmetric antennas ending within the
chimneys by oval shaped pads are oriented horizontally.
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(a) (b) (c)

(d) (e)

Figure S7: Simulations of the fundamental mode at 7.8 GHz, well separated from the second mode at 13 GHz. (a) Amplitude
of the electric field along a section of the cavity crossing the pads of the antenna of the TE110 mode (blue is zero and red is
maximal). (b) Vectorial view of the TE110 mode. (c) Current intensity along the surface of the cavity. (d) (e) Coupling of the
TE110 mode to the capacitive pads, electric field at the surface of the substrate.
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TIME-CONTROLLED STORAGE AND RETRIEVAL

In a practical quantum network architecture, the quantum memory of each node must be able to store, process
and exchange a quantum field in a time-controlled way. The temporal shape of the transmitted fields plays a crucial
role in the efficiency of each node. Indeed, the temporal envelope of the field released by the sender memory must
be adjusted to be efficiently captured by the receiver memory. For a finite memory bandwidth, the optimal temporal
shape is symmetric by time reversal [? ].

In principle in our device, it is possible to generate and capture time symmetric pulses by properly adjusting the
pump amplitude in time. However, due to the Kerr effect discussed in section , finding the optimal pump temporal
shape is a difficult problem. In what follows, we thus focus on the dual approach in which the temporal shape of an
incoming coherent state is optimized so that it is most efficiently captured by a square pump pulse.

Let us first consider a sequence in which the memory records an incoming pulse before time 0 and then keep it
stored. The corresponding pump amplitude remains constant at t < 0 and zero for t > 0, so that the input/output
rate is given by γio(t) = γ0θ(−t) where θ is the Heaviside function. The incoming pulse, sent before time 0 propagates
on the transmission line towards the memory while the pump is on so that 〈ain(t)〉 = fin(t)θ(−t). What is the
temporal shape of this wave packet that maximizes the efficiency of its capture by the memory?

Here, by efficient, we mean that the memory keeps as much of the incoming energy as possible without releasing it.
This corresponds to requesting that 〈aout(t)〉 = 0 at all times when the pump amplitude ensures that γio(t) = γ0θ(−t).
Given that the incoming pulse stops at time 0, this condition is met for t > 0 as long as the buffer mode a stays
empty, which leads to {

〈aout(t)〉 = 0 for t < 0
〈a(t = 0)〉 = 0

(S53)

This criterion depends on negative times only so that its solutions 〈ain(t)〉 = fin(t)θ(−t) can be found by considering
a constant coupling γio(t) = γ0 even at positive times.

Absorption without reflection

Let us first note that the poles of the Fourier transform of 〈ain(t)〉 are all in the upper-half plane of the complex
plane since it is non-zero only for t < 0. Moreover, the first line of Eq. (S53) imposes that 〈aout(t)〉 must be zero for
t < 0, thus the poles of its Fourier transform must all be in the lower-half plane of the complex plane.

This stringent condition can be satisfied since the reflection coefficient relating aout to ain input and output has
poles and zeros that are perfectly fit for transforming poles of the upper-half plane into poles of the lower-half plane.
Indeed, for large coupling rates γmio � κm, the reflection coefficient reads

〈aout[ωa]〉 = − (κa − γmio + 2i∆)(γmio + 2i∆)

(κa − γmio − 2i∆)(γmio − 2i∆)
〈ain[ωa]〉 (S54)

By choosing the poles of the input signal 〈ain[ωa]〉 to coincide with the zeros of the scattering coefficient, one gets an
output field 〈aout[ωa]〉 with poles in the the lower half-plane only as requested.

Therefore, the optimal input signal is of the form

〈ain[ωa]〉 =
α

γmio + 2i∆
+

β

κa − γmio + 2i∆
(S55)

and leads to an output signal equal to

〈aout[ωa]〉 = −α κa − γmio + 2i∆

(κa − γmio − 2i∆)(γmio − 2i∆)
(S56)

−β γmio + 2i∆

(κa − γmio − 2i∆)(γmio + κm − 2i∆)
(S57)

In the time domain, the input field corresponds to an increasing exponential of the form

〈ain(t)〉 = αθ(−t)e
γmio
2 t + βθ(−t)e

κa−γmio
2 t (S58)
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Qualitatively, the first term is mostly absorbed by the memory at a rate γmio and the second term is mostly absorbed
by the buffer at the γbio = κa − γmio . Up to now, we have not considered the second line in Eq. (S53), which ensures
that a complete transfer to the memory has been performed. One must then find the right balance between α and β
to verify 〈a(t = 0)〉 = 0.

Complete transfer

For a complete transfer, one must be sure that no fields remain in the buffer at t = 0 when the coupling is turned
off. This constraint imposes that

〈a(t = 0)〉 =

∫ +∞

−∞
〈a[ωa]〉dωa = 0. (S59)

leading to

κ−1/2

∫ +∞

−∞
〈ain[ωa]〉+ 〈aout[ωa]〉dωa = 0. (S60)
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Figure S8: (a) Expected time dependence of the various mode amplitudes for the optimal temporal shape of the input field
〈ain〉 and a pump amplitude turned off at time 0 so that γm

io = θ(−t) × 2 µs−1. Here, we assume κa = 10 µs−1 and κm = 0.
(b) Same curves when the pump is kept on so that γm

io = 2 µs−1.

This condition is met when α = −β. Hence the optimally absorbed input fields reads

〈ain[ωa]〉 ∝ 1

κa/2− γmio

(
1

γmio + 2i∆
− 1

κa − γmio + 2i∆

)
(S61)

∝ 1

(γmio − κm + 2i∆)(κa − γmio + 2i∆)
(S62)

and leads to an output field

〈aout[ωa]〉 ∝ −1

κa/2− γmio

(
1

γmio − 2i∆
− 1

κa − γmio − 2i∆

)
(S63)

∝ −1

(γmio − κm − 2i∆)(κa − γmio − 2i∆)
(S64)
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We can now give the expressions of the optimally catched input signal in the time domain (see Fig. S8)

〈ain(t)〉 ∝ θ(−t)(e
γmio
2 t − e

κa−γmio
2 t) (S65)

The first term ensures absorption without reflection, while the second term permits the complete transfer of the
absorbed pulse from the buffer to the memory cavity. It is worth to note that the optimally captured signal is
simply the time-reverse of a signal retrieved from an initially occupied memory. This retrieved signal can be observed
experimentally on aout by preparing the memory in a coherent state with the pump off, and then turning it on (or on
Fig. S8b at t > 0).

With this signal shape at the input, no signal is reflected and 〈aout(t)〉 = 0 if the pump is turned off at time 0, and
the field is stored in the memory mode m (see Fig. S8a). However, if the pump remains on at all times, the output
field is given by (see Fig. S8b)

〈aout(t)〉 ∝ θ(t)(e−
γmio
2 t − e−

κa−γmio
2 t) (S66)

Finally, in the special case of the strong coupling regime for which γmio = κa/2, the above expression breaks down
and the optimal signals are given by

〈ain(t)〉 ∝ θ(−t)teκat/2 (S67)
〈aout(t)〉 ∝ θ(t)te−κat/2 (S68)
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MEASUREMENT OF THE AMPLITUDE GAIN

In the experiment entanglement is generated between the memory and a propagating mode by sending a square
pump pulse at frequency fa + fm with an initially empty memory. If the memory is initially occupied by a coherent
state, the same pulse will result in parametric amplification. It was necessary to properly calibrate the gain of this
amplification to determine the entanglement threshold in the experiment. Since, the pump is not continuous, we have
developed a protocol to perform an accurate measurement of this pulsed amplitude gain.

First, we capture a coherent state in the quantum memory by turning the pump tone at the difference frequency
fa − fm. Then we turn on the entanglement pulse by applying a pump at the sum frequency fa + fm. It provides
a direct amplitude gain

√
G = cosh(r) on the memory mode m̂ and a cross amplitude gain

√
G− 1 = sinh(r) from

the memory mode m̂ to the transmission line mode âout. Finally we retrieve the amplified captured state in the
transmission line by turning on the pump tone at the difference frequency again.

We can repeat this measurement without the entanglement pulse, thus the amplitude gain is turn off,
√
G =

cosh(0) = 1.
The ON/OFF ratio of the squared integrated amplitude of the retrieval pulse provides the gain G = cosh2(r). This

protocol enables to determine the gain independently of the losses due to the inefficiency of the device.
As shown in Figure S9, we repeat this measurement for an increasing incoming wave packet energy. The amplification

process is linear on this energy scale, and it is important to check that the device in not saturated. The ratio of the
slopes gives a gain G = cosh2(r) = 2.29.

Entanglement RetrievalCapture

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2 Entanglement ON

Entanglement OFF

Retrieval OFF

Integration
window

Figure S9: Amplitude gain measurement protocol. The upper panel presents the timing of the pulsed measurement. The lower
panel presents the measurement results. It gives the squared amplitude of the retrieved field as a function of the power of the
source that generates the captured wave (square of the modulation amplitude). The squared amplitude gain is given by the
ratio of the slopes.

PHASE LOCKING

In this section, we stress that the relative phases of the local oscillators must be carefully locked in our experiment.
As shown in Fig.S10, various frequencies are implied in the conversion and entanglement processes.
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Kerr shift Kerr shift

Figure S10: Schematics of the frequency relations between the local oscillators. In practice, the local oscillators frequencies are
fLO
ent = 17.28625 GHz, fLO

conv = 1.6575 GHz and fLO
modem = 9.471875 GHz, the intermediate frequency is fIF = 25.5 MHz and

the mode frequencies are fm = 7.78888 GHz, fa,1 = 9.44638 GHz, fa,2 = 9.49738 GHz

For instance when an entangled state is generated, it is shared between the memory at a positive frequency fm
and the buffer at a negative frequency −fa,2. Phase locking is provided by the local oscillator at fLOent = fm + fa,2
producing the entanglement.
On the one hand, the part of the state that propagates at −fa,2 gets down-converted at the intermediate frequency
(IF) for readout by the demodulation local oscillator (fLOmodem) on the negative side such that fIF = fLOmodem − fa,2
(see Fig.S10).
On the other hand, the part of the state stored in the cavity at fm is retrieved in the transmission line by the
conversion local oscillator (fLOconv) at the buffer frequency fa,1 = fm + fLOconv. Then the signal is downconverted at the
intermediate frequency IF by the same demodulation local oscillator such that fIF = fLOmodem − fa,1. Note that fa,1
differs from fa,2 due to Kerr effect with different pump powers (see section on Kerr effect).

In the end, all the local oscillator frequencies are locked by the relation fLOent + fLOconv = 2fLOmodem. As a consequence,
the experiment requires a relative phase stability of these three local oscillators greater than the total acquisition time
of the order of 5 min. We have reached such a phase stability by carefully synchronizing our three commercial sources
(Agilent E8257D) using their 10 MHz synchronization port and rigid coaxial cables.

Note that in usual spectral measurement, the phase stability of local oscillator is not as crucial as here, the signal
is up-converted and down-converted by the same local oscillator then the phases cancel out. Here, the measurement
sequence presented in Fig.S10 consists in up-converting a signal from IF to fa,1 then store it at fm, amplifying it at
−fa,2 and finally down-converting the signal at IF. In this sequence, the phases of the local oscillators accumulate
instead of canceling out.
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NOISE CALIBRATION

Measurement outcome probability distribution

During the entanglement step, the Josephson Ring Modulator performs a reversible transform of the wavefunction
of the field via the unitary two-mode squeeze operator S = exp

(
reiϕP a†m† − re−iϕP am

)
where reiϕP is the complex

squeezing parameter, and a and m are the field operators of the two modes [4]. The input and output canonical field
operators are related by the scattering relations

aout,1 = S†ainS = cosh(r)ain + eiϕP sinh(r)m†in,1, (S69)

where ϕP is the phase of the pump and G = cosh2 r is the power direct gain which increases with pump power
|p|2. With the pump on, the vacuum state at the input is converted into a two-mode squeezed vacuum state |Sq〉 =
S |0〉a |0〉m = cosh(r)−1

∑
tanh(r)n |n〉a |n〉m.

In a second step, after a delay time τ , we apply the retrieval pulse to transfer the m mode in the transmission line
mode aout with an efficiency η. The outgoing mode produced during the entanglement step is denoted by aout,1 while
the one associated with the retrieval after a time τ is denoted by aout,2. The finite efficiency η may be modeled by
the contribution of a mode min,2, uncorrelated with all other modes.

aout,2 =
√
ηS†min,1S +

√
1− ηmin,2 =

√
η[cosh(r)min,1 + e−iϕP sinh(r)a†in] +

√
1− ηmin,2 (S70)

(S71)

The output signal aout is then amplified by a noisy amplifying setup with a gain Gamp. The uncorrelated noise added
by the amplifying setup is modeled by the bosonic operator hin whose effective temperature is mainly determined by
the noise temperatures of the cold HEMT amplifier. Thus, we collect the measurement outcomes of the operator Aout
and Mout.

Aout =
√
Gampaout,1 +

√
Gamp − 1h†1,in (S72)

=
√
Gamp(cosh(r)ain + eiϕP sinh(r)m†in,1) +

√
Gamp − 1h†2,in (S73)

Mout =
√
Gampaout,2 +

√
Gamp − 1h2†

2,in (S74)

=
√
Gamp(

√
η[cosh(r)min,1 + e−iϕP sinh(r)a†in] +

√
1− ηmin,2) +

√
Gamp − 1h†2,in (S75)

In order to perform a tomography of the entangled state, we perform a fast digital heterodyne measurement of
Aout and Mout. The entanglement and retrieval sequence described in the main text is repeated 4× 107 times. The
measurement outcomes are sorted in real-time by the FPGA board. Indeed, the FPGA generates six histograms giving
the probability distribution of measurement outcomes as a function of every pair of mode quadratures. The probability
distribution measured with an heterodyne detection correspond to Q(α, µ) the Q-function of (Aout, Mout) [5]. The
Q-function gives access to the normally ordered moment of the field operators.

〈ApaoutM
pm
outA

†qa
outM

†qm
out 〉 =

∫
αpaµpm(α∗)qa(µ∗)qmQ(α, µ)d2αd2µ. (S76)

Covariance matrix

For simplicity, we identify a ≡ aout,1 (since aout,1 corresponds to what was directly produced on mode a) and
m ≡ aout,2 (since aout,2 comes from what was stored in the memory). Without loss of generality, we also assume that
the mean value of the field operators are zero 〈a〉 = 〈m〉 = 0

One can calculate the covariance matrix V of the two mode state (Fig. S11c), which fully characterizes the EPR
state since it is Gaussian with zero mean [6]. In a coordinate system where x = {X̂a, P̂a, X̂m, P̂m}, one defines

Vij = 4

[
1

2
〈xixj + xjxi〉 − 〈xi〉〈xj〉

]
. With this convention, the covariance matrix of the vacuum state is the unity

matrix I4.
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V =
1

2


2〈(a+ a†)2〉 −i〈{a+ a†, a− a†}〉 〈{a+ a†,m+m†}〉 −i〈{a+ a†,m−m†}〉

−i〈{a+ a†, a− a†}〉 −2〈(a− a†)2〉 −i〈{a− a†,m+m†}〉 −〈{a− a†,m−m†}〉
〈{a+ a†,m+m†}〉 −i〈{a− a†,m+m†}〉 2〈(m+m†)2〉 −i〈(m+m†,m−m†}〉
−i〈{a+ a†,m−m†}〉 −〈{a− a†,m−m†}〉 −i〈{m+m†,m−m†}〉 −2〈(m−m†)2〉

 . (S77)

We expand the field operators in the normal order

V =


〈a2〉+ 〈a†2〉+ 2〈aa†〉 −i〈a2〉 − i〈a†2〉 〈am〉+ 〈a†m†〉 −i〈am〉+ i〈a†m†〉
−i〈a2〉 − i〈a†2〉 −〈a2〉 − 〈a†2〉+ 2〈aa†〉 −i〈am〉+ i〈a†m†〉 −〈am〉 − 〈a†m†〉
〈am〉+ 〈a†m†〉 −i〈am〉+ i〈a†m†〉 〈m2〉+ 〈m†2〉+ 2〈mm†〉 −i〈m2〉 − i〈m†2〉
−i〈am〉+ i〈a†m†〉 −〈am〉 − 〈a†m†〉 −i〈m2〉 − i〈m†2〉 −〈m2〉 − 〈m†2〉+ 2〈mm†〉

− I4.

(S78)
Consequently, the second-order cumulants of the Q-function whose tomography is directly obtained by heterodyne

measurement gives only access to the first term VQ, which is the normally ordered covariance matrix. One needs to
subtract to it the covariance matrix of the vacuum in order to get the actual V.

VQ = V + I4 (S79)

ON-OFF measurement

Determination of amplifying setup gain Gamp

In order to access the covariance matrix of the modes a and m, we must subtract the uncorrelated noise from the
amplifying setup hin and determine the gain of the amplifying setup Gamp.

One can show the following relations assuming that the modes ain and min,1 are in the vacuum state at rest. First
when the entanglement pulse is ON:

〈Aon
outA

on†
out 〉 = Gamp〈aout,1a†out,1〉|Sq〉 + (Gamp − 1)〈h†in,1hin,1〉thermal (S80)

= Gamp(cosh2(r)〈aina†in〉|0〉 + sinh2(r)〈m†inmin,1〉|0〉) + (Gamp − 1)〈h†in,1hin,1〉thermal (S81)

= Gamp cosh2(r) + (Gamp − 1)〈h†in,1hin,1〉thermal (S82)

Then when the entanglement pulse is turned OFF:

〈Aoff
outA

off†
out 〉 = Gamp〈aina†in〉|0〉 + (Gamp − 1)〈h†in,1hin,1〉thermal (S83)

= Gamp + (Gamp − 1)〈h†in,1hin,1〉thermal. (S84)

Consequently, we have:

〈Aon
outA

on†
out 〉 − 〈Aoff

outA
off†
out 〉 = Gamp(cosh2(r)− 1) (S85)

Here, the amplitude gain of the entanglement process cosh r is measured independently (Fig. S9), so we can extract
the gain of the amplifying setup Gamp:

Gamp =
〈Aon

outA
on†
out 〉 − 〈Aoff

outA
off†
out 〉

cosh2(r)− 1
(S86)

Gamp =
1

cosh2(r)− 1

∫
d2α |α|2(Qon(α)−Qoff(α)) (S87)
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Reconstruction of the covariance matrix

The measured histograms give an access to the measured normally ordered covariance matrix VMeas,on
Q and VMeas,off

Q .
Without loss of generality, we suppose that the noise added by the amplifying setup is thermal i.e. uncorrelated, it
corresponds to a diagonal covariance matrix.

VMeas,on
Q =


〈A2〉+ 〈A†2〉+ 2〈AA†〉 −i〈A2〉 − i〈A†2〉 〈AM〉+ 〈A†M†〉 −i〈AM〉+ i〈A†M†〉
−i〈A2〉 − i〈A†2〉 −〈A2〉 − 〈A†2〉+ 2〈AA†〉 −i〈AM〉+ i〈A†M†〉 −〈AM〉 − 〈A†M†〉
〈AM〉+ 〈A†M†〉 −i〈AM〉+ i〈A†M†〉 〈M2〉+ 〈M†2〉+ 2〈MM†〉 −i〈M2〉 − i〈M†2〉
−i〈AM〉+ i〈A†M†〉 −〈AM〉 − 〈A†M†〉 −i〈M2〉 − i〈M†2〉 −〈M2〉 − 〈M†2〉+ 2〈MM†〉


on

(S88)

= Gamp


〈a2〉+ 〈a†2〉+ 2〈aa†〉 −i〈a2〉 − i〈a†2〉 〈am〉+ 〈a†m†〉 −i〈am〉+ i〈a†m†〉
−i〈a2〉 − i〈a†2〉 −〈a2〉 − 〈a†2〉+ 2〈aa†〉 −i〈am〉+ i〈a†m†〉 −〈am〉 − 〈a†m†〉
〈am〉+ 〈a†m†〉 −i〈am〉+ i〈a†m†〉 〈m2〉+ 〈m†2〉+ 2〈mm†〉 −i〈m2〉 − i〈m†2〉
−i〈am〉+ i〈a†m†〉 −〈am〉 − 〈a†m†〉 −i〈m2〉 − i〈m†2〉 −〈m2〉 − 〈m†2〉+ 2〈mm†〉


|Sq〉

(S89)

+(Gamp − 1)


2〈h†in,1hin,1〉 0 0 0

0 2〈h†in,1hin,1〉 0 0

0 0 2〈h†in,2hin,2〉 0

0 0 0 2〈h†in,2hin,2〉


thermal

. (S90)

VMeas,on
Q = Gamp(V + I4) + (Gamp − 1)Vthermal (S91)

and

VMeas,off
Q =


〈A2〉+ 〈A†2〉+ 2〈AA†〉 −i〈A2〉 − i〈A†2〉 〈AM〉+ 〈A†M†〉 −i〈AM〉+ i〈A†M†〉
−i〈A2〉 − i〈A†2〉 −〈A2〉 − 〈A†2〉+ 2〈AA†〉 −i〈AM〉+ i〈A†M†〉 −〈AM〉 − 〈A†M†〉
〈AM〉+ 〈A†M†〉 −i〈AM〉+ i〈A†M†〉 〈M2〉+ 〈M†2〉+ 2〈MM†〉 −i〈M2〉 − i〈M†2〉
−i〈AM〉+ i〈A†M†〉 −〈AM〉 − 〈A†M†〉 −i〈M2〉 − i〈M†2〉 −〈M2〉 − 〈M†2〉+ 2〈MM†〉


off

(S92)

= Gamp


〈a2〉+ 〈a†2〉+ 2〈aa†〉 −i〈a2〉 − i〈a†2〉 〈am〉+ 〈a†m†〉 −i〈am〉+ i〈a†m†〉
−i〈a2〉 − i〈a†2〉 −〈a2〉 − 〈a†2〉+ 2〈aa†〉 −i〈am〉+ i〈a†m†〉 −〈am〉 − 〈a†m†〉
〈am〉+ 〈a†m†〉 −i〈am〉+ i〈a†m†〉 〈m2〉+ 〈m†2〉+ 2〈mm†〉 −i〈m2〉 − i〈m†2〉
−i〈am〉+ i〈a†m†〉 −〈am〉 − 〈a†m†〉 −i〈m2〉 − i〈m†2〉 −〈m2〉 − 〈m†2〉+ 2〈mm†〉


|0〉

(S93)

+(Gamp − 1)


2〈h†in,1hin,1〉 0 0 0

0 2〈h†in,1hin,1〉 0 0

0 0 2〈h†in,2hin,2〉 0

0 0 0 2〈h†in,2hin,2〉


thermal

(S94)

= Gamp


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

+ (Gamp − 1)


2〈h†in,1hin,1〉 0 0 0

0 2〈h†in,1hin,1〉 0 0

0 0 2〈h†in,2hin,2〉 0

0 0 0 2〈h†in,2hin,2〉


thermal

(S95)

VMeas,off
Q = 2GampI4 + (Gamp − 1)Vthermal (S96)

Consequently, knowing Gamp, the covariance matrix of (a,m) is given by:

V =
1

Gamp
(VMeas,on
Q − VMeas,off

Q ) + I4 (S97)
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Experimental result

Here, we present the measured histograms for an entanglement pump ON or OFF and their subtraction ON-OFF.
The covariance matrices extracted from these histograms with entanglement turned ON VMeas,ON

Q /Gamp, with the
entanglement turned OFF VMeas,OFF

Q /Gamp and finally the reconstructed covariance matrix V as described in the
previous part. Note that the noise added by the amplifying setup is uncorrelated as expected. Indeed, it only
affects diagonal elements and these matrix elements reach 160. This must be compared to the vacuum fluctuations
which amount to covariance terms of 1. Consequently the noise added by the amplifying setup corresponds to
Nadd = 〈h†in,1hin,1〉 = 〈h†in,2hin,2〉 ≈ 160 ∗ 1/2 = 80 photons on average.
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Figure S11: Histograms and corresponding covariance matrices (see text).

In order to compare the measured histograms with the ideal distribution one would get with a Gaussian state having
an identical covariance matrix V, we have plotted on the right side of Fig.S11 the subtraction of the corresponding
Husumi-Q functions. We have also plotted the contour of the reconstructed Wigner distribution of the EPR state
from the covariance matrix supposing that the state is Gaussian, the black circle corresponds to vacuum fluctuations.
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ENTANGLEMENT AND LOGARITHMIC NEGATIVITY

For a bipartite system, the amount of entanglement between the subsystems A and B can be quantified by means
of the logarithmic negativity [7]

EN (ρ) = − log Tr|ρTB | (S98)

where ρ is the density matrix of the bipartite system. Tr|ρTB | is the trace norm of the partial transpose of ρ with
respect to subsystem B. If EN (ρ) > 0 then the state is entangled, moreover it constitutes an upper bound to the
distillable entanglement of the quantum state. Indeed, it corresponds to the maximal number of equivalent Bell pairs
(entangled bits) that one can extract from the state by distillation.

In the case of Gaussian states, all measures of entanglement are equivalent, and they are defined by the covariance
matrix. Indeed, the positivity of the partially transposed state (Peres-Horodecki PPT criterion) is necessary and
sufficient for the separability of two-mode Gaussian states. Physically, it is meaningful to decompose it in four 2× 2
block matrices.

V =

(
α χ
χT µ

)
. (S99)

The diagonal blocks α and µ are the single-mode covariance matrices for â and m̂ respectively. Conversely, the
off-diagonal blocks χ correspond to the correlations between modes.

For Gaussian state, the logarithmic negativity becomes

EN = Max[− log ν, 0] (S100)

where

ν =

√
∆(V)−

√
∆(V)2 − 4 detV

2
(S101)

and

∆(V) = detα + detµ− 2 detχ (S102)
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