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Superconducting circuits and microwave signals are good candidates to realize quan-
tum networks, which are the backbone of quantum computers. We have realized a uni-
versal quantum node based on a 3D microwave superconducting cavity parametrically
coupled to a transmission line by a Josephson ring modulator. We first demonstrate
the time-controlled capture, storage and retrieval of an optimally shaped propagating
microwave field, with an efficiency as high as 80 %. We then demonstrate a second
essential ability, which is the timed-controlled generation of an entangled state dis-
tributed between the node and a microwave channel.

Microwave signals are a promising resource for quan-
tum information processing. Coupled to various quan-
tum systems [1–4] they could realize quantum networks,
in which entangled information is processed by quantum
nodes and distributed through photonic channels [5, 6].
The quantum nodes should generate and distribute mi-
crowave entangled fields while controlling their emission
and reception in time. Superconducting circuits are able
to generate entanglement [7–10] and quantum memories
provide control in time as demonstrated in emerging im-
plementations in the microwave domain using spin en-
sembles [11–13], superconducting circuits [14, 15] or me-
chanical resonators [16, 17]. Here, we present a supercon-
ducting device both able to store and generate entangled
microwave radiations shared between a memory and a
propagating mode. It is based on the Josephson ring
modulator [18, 19] that enables to switch dynamically
on or off the coupling between a low-loss cavity and a
transmission line by frequency conversion. We demon-
strate the time-controlled capture, storage and retrieval
of a propagating coherent state in a long lived electro-
magnetic mode. Exploiting the versatility of this circuit,
we then demonstrate the timed-controlled generation of
an Einstein-Podolsky-Rosen (EPR) state distributed be-
tween the quantum memory and a propagating wave-
packet. These new capabilities pave the way for complex
quantum communication and quantum computing pro-
tocols by means of photonic channels in the microwave
domain.

The superconducting node is made of three compo-
nents: a memory, a buffer and a parametric coupler
linking them. The memory is the fundamental mode
m̂ at frequency fm = 7.80 GHz of a low-loss 3D su-
perconducting cavity cooled down to 40 mK (Fig. 1).
The buffer is the fundamental mode â at frequency fa
of an on-chip resonator and is the only component di-
rectly coupled to the network channels with propagating
modes âin/out. The large coupling rate κa = (20 ns)−1

between buffer and channel ensures fast communication
compared to decoherence. The memory and buffer are
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Figure 1: (a) Schematic of the experimental setup. A high-Q
memory mode m̂ is parametrically coupled to a low-Q buffer
mode â, hence to input/output propagating modes âin and
âout, depending on the pump amplitude p. (b),(c) Schemat-
ics and picture of the device. The on-chip circuit couples to
a 3D superconducting cavity via antennas. The blue arrows
represent the polarization of the fundamental mode TE 110
in the cavity. The Josephson ring and buffer resonator are on-
chip. The differential mode (∆) couples with the buffer mode
while the common mode (Σ) is used for addressing the pump.
(d) Picture of the aluminum circuit fabricated on a c-plane
sapphire substrate. The antennas (blue) and the buffer mi-
crostrip resonator (orange) are highlighted in false color. (e)
Optical microscope image of the Josephson ring at the cross-
ing between antennas and buffer resonator. The Josephson
junctions are circled in white.

parametrically coupled through a ring of four Josephson
junctions pumped with a classical control field p at fre-
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Figure 2: (a) Capture, store and release protocol. Pulse se-
quences for the pump field p (green) at the difference fre-
quency fp = fa − fm, the input field ain and the resulting
output field aout (orange). The temporal shape of the in-
put field is chosen in order to optimize the capture efficiency.
(b) Time traces of the amplitude of the output field down
converted to 40MHz and averaged 6 × 104 times. The top
trace is measured without pump and reveals the optimized
input signal. The following traces correspond to the sequence
of (a) with increasing delay τ between capture and retrieval
from 0 µs to 8 µs. (c) Dots: retrieval efficiency η as function
of delay τ . η is defined as the ratio of the retrieved energy
normalized to the input energy. Plain line: exponential de-
cay η0e

−τ/τm characterizing the memory lifetime. Best fit
obtained for η0 = 80 % and τm = 3.3 µs.

quency fp. The magnetic flux through the ring allows
to tune fa between 8.7 and 9.6 GHz. As described in
previous works [20], the ring performs three-wave-mixing
and Hmix = ~χ(â+ â†)(m̂+ m̂†)(p+p∗). The device can
be operated in two distinct ways depending on the pump
frequency. For fp = |fa − fm|, the device operates as
a converter [18, 21]. In the rotating wave approximation
(RWA) and with p > 0 the termHconv = ~χp(â†m̂+âm̂†)
provides a tunable coupling rate χp with frequency con-
version between the buffer and memory modes. Con-
versely, for fp = fa+fm, the RWA leads to the paramet-
ric down-conversion HamiltonianHpd = ~χp(â†m̂†+âm̂).
The device then operates as an entanglement genera-
tor [9]. Starting from the vacuum state, an EPR state
is distributed between the propagating mode âout and
memory mode m̂. These properties offer a striking re-
semblance with memories based on mechanical resonators
whose input/output rates and frequencies are two to
three orders of magnitude smaller [16, 17].

In order to demonstrate the performances of the mem-

ory, one can first capture and retrieve a propagating clas-
sical field. Depending on its temporal shape, the pump
amplitude has to be shaped appropriately in order to
maximize the capture efficiency [22]. In this experiment,
we used the dual approach of optimizing the temporal
shape of an incoming coherent state so that it is cap-
tured by a square pump pulse turning off at time t = 0
(Fig. 2a). The optimal shape corresponds almost to the
time-reverse of a signal retrieved from an initially occu-
pied memory [15, 23]. It depends on the input/output
rate γio as [23] ain(t) ∝ θ(−t)(eγiot/2−e(κa−γio)t/2). The
first term ensures absorption without reflection, while
the second term permits the complete transfer of the
absorbed pulse from the buffer to the memory cavity.
The amplitude of the pump pulse was chosen in order to
maximize the input/output rate to γ0io. Indeed, for large
enough pump powers such that χp > κa/2 the modes
â and m̂ hybridize and the input/output rate saturates
to [23] γ0io = κa(1 −

√
1− (2κc/κa)2)/2 ≈ (110 ns)−1.

Note that it corresponds to the fully hybridized in-
put/output rate κa/2 reduced by the antenna coupling
rate κc, which is defined by the exit rate κc ≈ (50 ns)−1

of the 3D mode if the antennas are directly connected to
a transmission line through ∆ port (Fig. 1). It is worth-
while to note that, although the memory has a finite life-
time, the frequency conversion between modes m and a
ensures that the input/output rate is exactly zero γio = 0
when the pump is turned off, leading to an infinite on/off
ratio. Besides, the device being non-resonant with the
conversion operating frequency fp = fa− fm ≈ 1.5 GHz,
the transfer rate can be varied much faster than κa.

The amplitude 〈âout〉 of the mode coming back from
the device is measured for several pump pulse sequences
(Fig. 2b). In a first control measurement (top trace), the
pump is kept turned off such that the measurement cor-
responds to the directly reflected incoming pulse. Note
that there are about 10 photons on average in the incom-
ing wavepacket. In the following measurements (traces
below) the pump is turned on before time 0 and after
time τ (Fig. 2a). Only 5 % of the incoming pulse energy
is reflected while it is sent at t < 0 indicating the effi-
cient absorption of this pulse shape. When the pump is
turned back on after a delay τ , the device releases the
captured state back in the transmission line as can be
seen in Fig. 2b. Note that the chosen temporal shape of
the incoming signal is indeed the time reverse of these
pulses up to an amplitude rescaling, which corresponds
to the efficiency of the memory. Calculating the memory
efficiency η, which is the ratio between the retrieved pulse
energy and the incoming pulse energy leads to an expo-
nential decay as a function of delay time η(τ) = η0e

−τ/τm

(Fig. 2c). The memory lifetime τm = 3.3 µs is much
larger than γ−1io but limited by unidentified losses in the
3D cavity coupled to the antennas. The much smaller de-
cay rates achieved in similar 3D cavities [24] leave room
for improvement in the future. Note that the anoma-
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lously large efficiency at zero delay η(0) > η0 = 80 %
can be explained by a still occupied buffer cavity at time
t = 0. Besides the outgoing phase is identical to that of
the incoming pulse, demonstrating that the memory pre-
serves phase coherence. Finally, the number of operations
that can be performed by the memory within its lifetime
is limited by the time-bandwidth product γioτm = 30.
This combination of large memory efficiency and time-
bandwidth product makes this device a state of the art
quantum memory [25].

Promisingly, the device cannot only be used as a mem-
ory but also as an entanglement generator. In a second
experiment, we demonstrate the generation of an EPR
state distributed between the propagating mode âout and
the memory mode. Note that this experiment has been
performed during another cooldown of the same device
for which the memory lifetime was slightly degraded to
τm = 2.3 µs. Starting from the vacuum state both in
the memory and in the mode âout, a pulse at pump
frequency fp = fa + fm = 17.28 GHz produces a two-
mode squeezed vacuum state |Sq〉 = eiHpdτ/~|0〉a|0〉m =
cosh(r)−1

∑
tanh(r)n |n〉a |n〉m where the squeezing pa-

rameter r increases with the pump pulse amplitude [9].
The entanglement between memory and propagating
modes can be demonstrated by measuring the correla-
tions between the fluctuations of their mode quadratures,
and showing that there is more correlation than allowed
by classical physics [7, 8, 10]. The quadratures of both
modes can be measured using the same detector on line
a provided that the memorized field is released into the
transmission line at a later time.

The pulse sequence used in the experiment (Fig. 3a)
starts by a square pump pulse at fp = fa + fm =
17.28 GHz during 500 ns that generates an EPR state.
While one part of the pair is stored in the memory, the
other part propagates in the transmission line, is am-
plified by a low-noise amplifying detection setup and
recorded using fast digital heterodyne detection based on
a Field Programmable Gate Array (FPGA) [8, 26]. After
a delay τ = 200 ns, a square pulse is applied on the pump
field at fp = fa−fm with an amplitude such that the out-
put rate is γio and lasting for 500 ns. This pulse releases
the memory field which is then amplified and measured
using the heterodyne detection setup. At the end of a
sequence, the four mode quadratures X̂a, P̂a, X̂m and
P̂m have been measured (defining X̂m ≡ (m̂+m̂†)/2 and
P̂m ≡ (m̂− m̂†)/2i).

The correlations can be calibrated using the known
variance of the single mode quadratures. Indeed, for
mode a, the thermal state corresponds to amplified vac-
uum fluctuations with a power gain cosh(2r) resulting
in a variance for both quadratures ∆X2

a = ∆P 2
a =

cosh(2r)/4. Note that we assume that the field is in
the vacuum at thermal equilibrium with the refrigerator
temperature 45 mK � hf/kB ≈ 0.4 K. The calibration
then comes down to determining the gain cosh(2r) pre-
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Figure 3: Entanglement between memory and propagating
mode. (a) Scheme of the pulse sequence. Top: pump am-
plitude p is shown in red for fp = fa + fm and in green for
fp = fa − fm. Bottom: output noise amplitude in time.
(b) Measured two-mode covariance matrix. The convention
used is such that the vacuum state corresponds to the unity
matrix. The 2 × 2 block-diagonal matrices in orange and
blue represent the single mode â and m̂ covariance matrices.
The off-diagonal matrices in red represent the correlations
between modes. Correlations go beyond the greyed regions
which demonstrates entanglement.

cisely. This can be done by storing a small coherent field
(about 1 photon on average) in the memory and measur-
ing the output amplitudes with and without applying the
entangling 500 ns pump tone at fp = 17.28 GHz before
release [9]. The entangling pulse effectively amplifies the
coherent field with an amplitude gain cosh(r) which is
here found to be equal to 1.51.

One can then calculate the covariance matrix V of the
two mode state (Fig. 3b), which fully characterizes the
EPR state since it is Gaussian with zero mean [27]. The
FPGA processes 4× 107 pulse sequences in 5 minutes so
that V is calculated with minimal post-processing [8, 23,
28]. In a coordinate system where x = {X̂a, P̂a, X̂m, P̂m},
one defines Vij = 2(〈xixj+xjxi〉−2〈xi〉〈xj〉). Physically,
it is meaningful to decompose it in four 2× 2 block ma-
trices.

V =

(
α χ
χT µ

)
. (1)

The diagonal blocks α and µ are the single-mode covari-
ance matrices for â and m̂ respectively. Since an EPR
state is thermal when disregarding the other mode, there
is no correlation between quadratures X and P for a sin-
gle mode and the variances ∆X2 and ∆P 2 are almost
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Figure 4: Covariance matrix and entanglement as a function
of the storage time τ . (a) Pulse sequence with tunable storage
time τ . (b) Dots: diagonal terms of the covariance matrix V
giving the energy of each mode. Lines: average value (for α)
and exponential fit (for β). The decay rate of the terms in β
gives the energy relaxation time T1 = 2.3± 0.1 µs. (c) Dots:
Off-diagonal amplitudes in V representing the coherence be-
tween memory and propagating modes. Line: exponential
fit, whose rate sets the decoherence time T2 = 4.5 ± 0.1 µs.
Correlations above the entanglement threshold (EN = 0)
demonstrate entanglement between memory and propagating
modes. (d) Dots: Logarithmic negativity EN measuring the
entanglement between modes. Line: prediction [23].

equal. For mode a, by definition of the calibration pro-
cess, one gets V11 ≈ V22 ≈ cosh(2r)/4 = 3.66 (Fig. 3b).
The memory mode is less occupied because of losses at a
rate τ−1m during the entanglement pulse and the waiting
time τ = 200 ns so that V33 ≈ V44 ≈ 2.55. Conversely,
the off-diagonal blocks χ correspond to the correlations
between modes. In each block, the phase of the pump
field was optimized to put all the weight of the correla-
tions in the two terms V14 ≈ V23 ≈ 2.79. The amount
of entanglement in the two mode state can be measured
by the logarithmic negativity EN . It corresponds to an
upper bound for distillable entanglement [28]. Here, the
memory and the propagating modes share EN = 1.36
entangled bits (e-bits), which indeed demonstrates the
ability of the device to generate and preserve entangle-
ment between modes.

The experiment was repeated for various storage times
τ (Fig. 4a). The typical amplitude

√
|detµ| of the

memory mode terms in V decrease exponentially with
τ (Fig. 4b) as expected from the experiment with coher-
ent states in Fig. 2c. This leads to a relaxation time for
the memory of T1 = 2.3 ± 0.1 µs in agreement with the

memory lifetime τm measured using coherent states in
the same cool down of the device. The small variations
in the amplitude of the propagating mode

√
|detα| with

τ give a sense of the measurement uncertainty (Fig. 4b).
Interestingly, the two-mode correlations also decay expo-
nentially (Fig. 4c). The corresponding characteristic time
is the decoherence time T2 = 4.5± 0.1 µs of the memory.
The fact that T2 ≈ 2T1 demonstrates that energy relax-
ation dominates all decoherence mechanisms during the
storage of a quantum state. The logarithmic negativity
also decreases with τ as shown in Fig. 4d.

In conclusion, we have realized quantum node based
on an hybrid 2D/3D superconducting circuit. The ef-
ficient capture, storage and retrieval of a coherent state
was demonstrated. Moreover, the device permits the gen-
eration and storage of entangled states distributed be-
tween the node and photonics channels. The versatility
of the device paves the way for complex quantum com-
munication protocols in the microwave domain such as
continuous variable quantum teleportation. Besides, it
provides a useful resource for 3D cavities where the on-
demand extraction of a field quantum state was needed.
This could be used to implement readout and feedback in
cavity networks or even quantum computation with the
memory field itself [29]. Finally, superconducting qubits
can easily be embedded in this device, which could lead
to protected quantum memories [4] and even protected
quantum computing with microwave fields [29, 30].
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