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INTRODUCTION AU CALCUL QUANTIQUE 

INTRODUCTION TO QUANTUM COMPUTATION 

Chaire de Physique Mésoscopique
Michel Devoret
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Première Leçon / First Lecture
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What is a quantum computer?

Aren't all computers quantum?

Each bit of ordinary computer information is physically
represented by thousands of quantum particles. 

Only the average behavior of these particles encodes information,
and it is described by classical physics. 

Quantum  computer differs from classical computer in 2 respects:
- each bit of information is physically carried by only one particle
- superposition principle of quantum mechanics is exploited

This course can be followed both by physicists and computer scientists
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CONTENT OF THIS YEAR'S LECTURES

1. Introduction, c-bits versus q-bits

2. The Pauli group and quantum computation primitives

3. Stabilizer formalism for state representation 

4. Clifford calculus

5. Algorithms

6. Error correction 

QUANTUM COMPUTATION  FROM THE PERSPECTIVE OF
MESOSCOPIC CIRCUITS

NEXT YEAR: QUANTUM FEEDBACK OF ENGINEERED QUANTUM SYSTEMS
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VISIT THE WEBSITE OF THE CHAIR
OF MESOSCOPIC PHYSICS

http://www.college-de-france.fr

then follow  
Enseignement > Sciences Physiques > Physique Mésoscopique > Site web

Questions, comments and corrections are welcome! 

write to "phymeso@gmail.com"

PDF FILES OF ALL LECTURES ARE POSTED ON THESE WEBSITES

http://www.physinfo.fr/lectures.html

or
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May 11: Cristian Urbina, (Quantronics group, SPEC-CEA Saclay)
Josephson Effect in Atomic Contacts and Carbon Nanotubes

May 18: Benoît Douçot (LPTHE / Université Pierre et Marie Curie)
Emergence de symétries discrètes locales dans les réseaux de jonctions Josephson

June 1:  Takis Kontos (LPA / Ecole Normale Supérieure)
Points quantiques et ferromagnétisme

June 8:  Cristiano Ciuti (MPQ, Université Paris - Diderot)
Ultrastrong coupling circuit QED : vacuum degeneracy and quantum phase
transitions 

June 15: Leo DiCarlo (Yale)
Preparation and measurement of tri-partite entanglement in a superconducting
quantum circuit 

June 22: Vladimir Manucharian (Yale)
The fluxonium circuit: an electrical dual of the Cooper-pair box?

CALENDAR OF SEMINARS

NOTE THAT THERE IS NO LECTURE AND NO SEMINAR ON MAY 25 ! 
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LECTURE I : C-BITS vs Q-BITS

1. Information and physics

2. Quantum bits

3. Classical information processing

4. Reversible logical circuits

5. Error correction

6. Linear vs non-linear processing
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OUTLINE

1. Information and physics

2. Quantum bits

3. Classical information processing

4. Reversible logical circuits

5. Error correction

6. Linear vs non-linear processing
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INFORMATION AS SEQUENCE OF SYMBOLS

:

LES□SANGLOTS□LONGS□DES□VIOLONS□DE□L’AUTOMNELetters:

♠♣♥♠♦♣♥♠♦♣♥♣♣♦♦♠♣♥♦♠♥♥♠♦♣♥♣♠♣♦♠♠♥♠♣♥♠♦♣Geometric
shapes:

31415926535897932384626433832795028841971693993Digits (decimal):

INFORMATION HAS TWO SIDES: LOGICAL AND PHYSICAL

- Mathematical entities combined by abstract operations
- States of a physical system that evolves dynamically 

Digits (binary): 11001001000011111101101010100010001000010110100

SYMBOLS:

ALL INFORMATION CAN BE REDUCED TO SERIES OF BITS (Shannon) 

10-I-7



5

PHYSICAL BIT = BISTABLE SYSTEM

1

0

Mechanical system with
electrical readout: switch

Electrical system with
electrical readout: RAM cell

CMOS Transistors:

0 1

+ _ _ +
N N P P

+Vcc
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2N = 1024 POSSIBLE CONFIGURATIONS

REGISTER WITH N=10 BITS:

REGISTER = SET OF ACTIVE BITS

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 0

represents one number between 0 et 1023

10-I-9



6

U(x)

x
0x 1x

dissipative
dynamics in

two-well
potential

( )d 0
d

mx x U x
x

�� �η+ + =
0 1

p

phase-space
portrait:

x

logical
states
correspond
to attractors 

stability comes
at a price

PHYSICAL C-BITS ARE STRONGLY DISSIPATIVE

friction coef.,
interaction w/
many d.o.f.
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0 basin

1 basin separatrix

DISSIPATION = INTERACTION WITH MANY 
DEGREES OF FREEDOM

( )d 0
d

mx x U x
x

�� �η+ + =

( )

( )

2 2

2

2 2

1

d 0
d

0

2

i
i i

i i

i i i i

i i

i i

ymx m c x U x
c x

y y c x

cm

��

��

η

ω

ω

ωπ
ω ω −

⎛ ⎞⎟⎜ ⎟+ − + =⎜ ⎟⎜ ⎟⎜⎝ ⎠

+ − =

=
−

∑

(Caldeira & Leggett, 1982)

FLUCTUATION-DISSIPATION THEOREM

Bit state is either 0 or 1: 1) strong dissipation and  2) kTnoise<< ΔU

0 1

Energy
Coordinate x

ΔU kTnoise

U(x)
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BIT ERRORS

U(x)

x
0x 1x

UΔ

0

1 1

01 ε−

1 ε′−

ε

ε′ expa
B eff

U
k T

ε ε ω τ
⎛ ⎞Δ ⎟⎜ ⎟′ ⎜= = − ⎟⎜ ⎟⎟⎜⎝ ⎠

if symmetric well, 1 efftive tempre:

Dissipation implies noise, but bit error rate can be made exponentially small.

Higher barriers mean larger energy is needed to change state.

0 1
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HOW CAN BITS BE BEST
REPRESENTED PHYSICALLY?

QUESTIONS INFORMATION PHYSICS
ATTEMPTS TO ANSWER

WHAT CONSTRAINTS DO THE
LAWS OF PHYSICS IMPOSE ON 

SPEED AND COMPLEXITY OF
INFORMATION PROCESSING?

WHAT ARE THE LINKS BETWEEN THE
LOGICAL PROPERTIES OF INFORMATION

AND THE LAWS OF THE PHYSICAL WORLD? 
10-I-13
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OUTLINE

10-1-6b

1. Information and physics

2. Quantum bits

3. Classical information processing

4. Reversible logical circuits

5. Error correction

6. Linear vs non-linear processing

U(x)

x
0x 1x

NO
DISSIPATION

0

1

FROM CLASSICAL BIT TO QUANTUM BIT

N

H

H

H

N

H

H

H

DISCRETE
ENERGY
LEVELS
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U(x)

x
0x 1x

NO
DISSIPATION

0

1

FROM CLASSICAL BIT TO QUANTUM BIT

N

H

H

H

N

H

H

H

Ψ1(x)

Ψ0(x)

DISCRETE
ENERGY
LEVELS
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TWO FLUX STATES
OF A SUPERCONDUCTING RING

0Φ =
2
h
e

Φ =

10-I-16
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TWO FLUX STATES
OF A SUPERCONDUCTING RING

0Φ =
2
h
e

Φ =

4ext
h
e

Φ =
10-I-16b

Potential energy

Position coordinate

ANY POTENTIAL BUT QUADRATIC

Emission
spectrum

frequency
01ω12ω23ω34ω

Ψ0

Ψ1
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QUANTUM BIT: 2 LEVELS
FORMING EFFECTIVE SPIN 1/2

ENERGY

}

MOLECULE, ATOM, PARTICLE...

10α β+

0

1

2

3
4

Qubit state can be 0 "and" 1: 1) no dissipation and 2) kTnoise<< hω01

0

1

spin up

spin down

y

z

x

θ

φ
2

2

2

2

cos e

sin e

i

i

φ

φ

θ

θ

α

β

+

−

=

=

Bloch sphere
representation
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OUTLINE

10-1-6c

1. Information and physics

2. Quantum bits

3. Classical information processing

4. Reversible logical circuits

5. Error correction

6. Linear vs non-linear processing
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BOOLEAN CALCULUS

{ }{ }0,1 ; ;iB= ⊕ / 2Z ZA.K.A.Boolean field

2 binary digits
= 2 numbers addition

modulo 2
multiplication
(modulo 2)

10-I-19

011
100

b2

10
b1 b1⊕b2

101
000

b2

10
b1 b1•b2

BOOLEAN CALCULUS 

{ }{ }0,1 ; ;iB= ⊕Boolean field

2 binary digits
= 2 numbers addition

modulo 2
multiplication
(modulo 2)
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LOGICAL OPERATIONS

{ }{ }0,1 ; ;iB= ⊕Boolean field

addition
modulo 2

multiplication
(modulo 2)

Notations
and functions:

( )
( )
( )

( )

NOT 1

XOR , XOR

AND , AND

OR , OR

x x x

x y x y x y

x y x y x y

x y x y x y x y x y

i

i i

= = ⊕

= = ⊕

= =

= = = ⊕ ⊕

See also formal logic, predicate calculus, etc...

False = 0
True  = 1

A.K.A. CNOT

10-I-20

LOGICAL REGISTERS AND THEIR MAPPINGS

( )1 2 1 0,...., , , N
Nx x x x x

G
−= ∈BN bits

y x bA
GG G

= ⊕ : affine function of a Boolean vector

y x⊕
G G

: Hamming distance

This vector can also be seen as an non-negative integer { }
1

0

0,1, 2,...., 2 1

2

N

N
i

i
i

x

x x
−

=

∈ −

=∑
A: Boolean matrix

Boolean vector

Boolean scalar product of two Boolean vectors:

0 0 1 1 1 1.... ...i i N Ny x y x y x y x y xG G
: − −= ⋅ ⊕ ⋅ ⊕ ⊕ ⋅ ⊕ ⊕ ⋅

Hamming scalar product of two Boolean vectors:

Boolean sum

integer sum

x x x= ⋅
G G G

: Hamming norm

used when no confusion:

10-I-21

0 0 1 1 1 1.... ...i i N Ny x y x y x y x y xG G
− −⋅ = ⋅ + ⋅ + + ⋅ + + ⋅
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THE MEASURE OF INFORMATION

Consider a string of symbols x. Each string is a register content.
A higher level, we also define an ensemble of strings of the type of x,
which defines a random variable  X, from which x is a realization.

( ) ( ) ( )2log
x

H X p x p x
∈

⎡ ⎤=− ⎣ ⎦∑
X

Entropy:

Mutual information: ( ) ( ) ( ) ( )

( )
( )

( ) ( )2

; ,

,
, log

x y

I X Y H X H Y H X Y

p x y
p x y

p x p y∈ ∈

= + −

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦

∑∑
X Y

measures how uncertain X  is (conversely, how much choice
is represents, depending on point of view)

(Shannon, 1948)
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measures the mutual dependence of the two random variables
X and Y. 

INFORMATION CONSERVATION

General bijective (reversible) function:

( ) ( )x y f x f y
G G G G
≠ ⇒ ≠

Information is conserved by a process                     if

( ) ( ), ; / 1X I X Y H X∀ =

We can also say that  f conserves information 

(permutation of first  2N integers)

X Y→

Hamiltonian evolution is information conserving.
We thus limit ourselves to reversible functions.

(generalization of phase space volume conservation)

10-I-23
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OUTLINE

10-1-6d

1. Information and physics

2. Quantum bits

3. Classical information processing

4. Reversible logical circuits

5. Error correction

6. Linear vs non-linear processing

STRUCTURE OF REVERSIBLE LOGICAL CIRCUITS

0x
1x

2x

1Nx −

0x′
1x′

2x′

1Nx −
′

information preserving function, a.k.a. reversible computation

0x
1x

2x

0 0 1x x′ = ⊕

1 1x x′ =

2 2 1x x x′ = ⊕

NOT

CNOT

Example:

time

10-I-24
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TRUTH TABLE

tc

11

01

10

00

t’c’

01

11

10

00

CNOTreversible
function

before after

all register
configurations
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0 0

1 1

2 2

3 3

' 1 0 0 0
' 0 1 0 0
' 0 0 0 1
' 0 0 1 0

x x
x x
x x
x x

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

G G
G G
G G
G G

compact vector notation:

COPY, SWAP AND ERASE

1x

2 0x =
1 1x x′ =

2 1x x′ =
CNOTancilla bit

COPY OPERATION

SWAP OPERATION

1x

2x
1 2x x′ =

2 1x x′ =
CNOT CNOT CNOT

ERASE OPERATION

1x

2 0x =
1 0x′ =

2 1x x′ =
CNOT CNOT CNOTancilla bit

10-I-26
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NON-LINEAR REVERSIBLE FUNCTIONS

1x

2x
1 1x x′ =

2 2 1 0x x x xi′ = ⊕
CCNOT (a.k.a.Toffoli gate)

0x
0 0x x′ =

1x

2x
( )1 1 1 2 0x x x x xi′ = ⊕ ⊕

( )2 2 1 2 0x x x x xi′ = ⊕ ⊕

CSWAP 

0x
0 0x x′ =

REVERSIBLE AND GATE

FREDKIN GATE

10-I-27

UNIVERSAL SET OF GATES

The Toffoli and Fredkin gates are universal:
a series of either one of these gates can be used

to compute any reversible function.

The CNOT gate by itself is not universal.
It can only compute a linear reversible 

function.

10-I-28
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CONSERVATIVE REVERSIBLE FUNCTIONS

( )f x x=
G G

The SWAP and FREDKIN gates are conservative.

Neither the CNOT nor the CCNOT (Toffoli)  are conservative.

A conservative gate conserves the Hamming norm. It verifies:

Do not mix the notions of reversible gate and conservative gate!

10-I-29

If 0 and 1 correspond to 2 different energies, a conservative gate conserves energy.

OUTLINE

10-1-6e

1. Information and physics

2. Quantum bits

3. Classical information processing

4. Reversible logical circuits

5. Error correction

6. Linear vs non-linear processing
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PARITY CHECK CODES

( ) 1
1 2 1 0, ,...., , , N

C N Nx x x x x x
G +

−= ∈BN+1 bits

1

0

N

N i
i

x x
=

=

= ⊕∑constraint: Boolean
sum

parity bit

If  1 or an odd number of errors occur, constraint is violated.
It is possible to detect that an error has occurred,

it is but impossible to correct it. 
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ERROR CORRECTING CODES

parity
check
bit

parity
check
bit

parity check bit

Example of Hamming code:
4 bits protected with 3 parity check bits

0 1 2 6

0 1 3 5

0 2 3 4

0
0
0

x x x x
x x x x
x x x x

⊕ ⊕ ⊕ =

⊕ ⊕ ⊕ =

⊕ ⊕ ⊕ =

Cx e′ =AG G
The error syndrome matrix A detects 
which error has occurred and corrects it

0x

1x

2x3x

5x

4x

6x
0e1e

2e

0Cx =AG

[ ]( ) [ ]( ) [ ]( )0 1 2i ix x e f i e g i e h i→ ⊕ ⊕ ⊕ ⊕

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

A
⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

i
f

g

h

Requires 7  3-way AND + linear gates

Constraints: 

can be written as: 

where: 

After one error: 
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OUTLINE

10-1-5a

1. Information and physics

2. Quantum bits

3. Classical information processing

4. Reversible logical circuits

5. Error correction

6. Linear vs non-linear processing

INTEGER ADDITION (HAMMING NORM EVALUATION)
IS A NON-LINEAR OPERATION

0x
1x
2x
3x

5x
4x

6x

0x
1x
2x
3x

5x
4x

6x
0y
1y
2y

0a
1a
2a

6

0
i

i

s x x
=

= =∑ G 0 0 1
0 1 2

2mod 2; mod 2;
2 4

s y s y yy s y y
⎛ ⎞ ⎛ ⎞− − −⎟ ⎟⎜ ⎜= = =⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
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LOGICAL CIRCUIT FOR 3-BIT INTEGER ADDITION

1x

2x
1x

2x

0a

1a

0x 0x

0y

1y
x2

x2⊕x1

x2⊕x1⊕x0
x2x1

x2x1⊕x1x0

x2x1⊕x1x0⊕x2x0

can follow
the state
of the 
system
by Boolean
calculus!
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ADDRESS DECODE IS ALSO
AN IMPORTANT NON-LINEAR OPERATION

( )( )( )
0 1 22 4 0 0 1 1 2 21 1 1b b by b x b x b x+ + = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

x0
x1
x2
a0
a1
a2
a3
a4
a5
a6
a7

y0
y1
y2
y3
y4
y5
y6
y7

x0
x1
x2

10-I-34
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WHAT ARE ALL THE LINEAR OPERATIONS 
ON TWO BITS?

Linear operation: group isomorphism

1 bit: only one trivial isomorphism F F

( ) ( ) ( )1 2 1 2f g g f g f g⋅ = i

where : 1F b b→ ⊕

2 bits: 6 different isomorphisms:

transforms identity into identity

FIFI
IFIF

Id

1 0
0 1

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

FFFI
IFIF

CNOTtc

1 1
0 1

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

FIFI
FFIF

CNOTct

1 0
1 1

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

is the flip operation on 1 bit

IFFI
FIIF

SWAP

0 1
1 0

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

FFFI
FIIF

SWCNtc

1 1
1 0

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

IFFI
FFIF

SWCNct

0 1
1 1

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦
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LINEAR OPERATIONS OF A REGISTER ARE
GENERAL GROUP ISOMORPHISMS

Example: CNOT operation

IIIFFIIIFIIIF

IIFFFIIIFIIIF

The Toffoli or Fredkin gate do not share this property

They are “exterior” to the group structure of the register

QUANTUM INFORMATION ABOLISHES THESE CLASS DISTINCTIONS!

series of bit flips
applied to register

resulting
series of bit flip
after operation

10-I-36
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END OF LECTURE


