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PLAN

Protection: symmetry and hardware error
correction

Josephson implementation: larger and
minimalistic systems.

Comparison between different designs
Challenge of numerical simulations
The most promising design (currently)

Experiment: advances and problems.



REPETITION CODE

Classical repetition code (5 physical bits correct 2 errors):

[Logical 0> = [00000>
|Logical 1> = [11111>

Quantum repetition code:

|C 0> = |00000>
|C1>=]11111>

- protect against the flips (X-errors)

|+>=1/N2 (|C 0> + |C 1>)
|->=1A2(|C 0> - |C 1>)
To protect against phase errors (Z-errors) form

|Logical +> = |[+++++>
|Logical - >=|-- - - - >

In matrix form:

25 physical qubits to correct
two errors and store 1 logical

|00000> + |11111>

|00000> - |11111>

|00000> + [11111>

|00000> - |11111>

|00000> + [11111>

|00000> - |11111>

|00000> + [11111>

|00000> - |11111>

|00000> + [11111>

|00000> - |11111>




HARDWARE ERROR CORRECTION

Main idea:
Find the physical system in which the lowest two states are given by the same

Effective noise acting on logical variable: h ., = thAh—é

k>1 k
|00000> + [11111> |00000> - [11111>
In matrix form: |00000> + |11111> |00000> - |11111>
|00000> + [11111> |00000> - |11111>
25 physical qubits to correct 100000> + [11111> 1000005 - [11111>

two errors and store 1 logical

|00000> + [11111> |00000> - [11111>




PROTECTED QUBIT:SYMMETRY VIEW

o olo|eo ?
o olo|e all P, and Q,, except a O(1) number of each.

Effect of noise appears in N order of the perturbation
Qn, theory:

SE~(BH(t) /A)N-1 SH(1)

Simplest Spin Hamiltonian
H=2,, J*4 0% 0%+ 2} %, 0% 07
Rows Columns

P=[1, 0% Q=1 0%

Crucial issues:
1. Which model has a large gap A?




EQUIVALENCE OF SYMMETRY AND
ERROR CORRECTION

Special very symmetric Hamiltonian
H:-ZJH \] X O-Xjk o) XJ| = Zk| \] z sz P Z|

Pz, =[], 0%, - row product

Rows Columns
Solution of the model: P=l1, 0% Q=1 0%
Ground states of one row: .
IGS 1> = |—>—>—>—>—>> GS 2> = |<—<—<—<—<—> A Pk and QI SHLCOlILIS

[—>>=(11>+]|>)2 | —>=(|1>-]|>)N2

|[+>=|GS 1>+ |GS 1> - has even number of spins down P?|+>=|+>
|->=|GS 1> - |GS 1> - has odd number of spins down P?|->=-|->
Ground state of the whole system:

11>=T1,[+> and [0>=TT,|->

Ground state of the model Hamiltonian is the doublet of reietition code!




TWO ALTERNATIVES

ldentify and implement very symmetric
Hamiltonian with a smallest possible
number of Josephson junctions and islands,
all very well controlled.

Example: tetrahedral symmetry.

Implement larger arrays with only
approximate symmetries that compensate a
lack of control by the size of the array.



TETRAHEDRAL QUBIT: SMALLEST JJ ARRAY

o Josephson energy EJ =5
7T

Charging/capacitive E — e
energy c ™ 2C

E, > E_

to begin with

Classical energy

V — EJZ|:1_ (:os(¢j = ¢i)]

i<j




FRUSTRATION

Threading a flux ®,/2 through
each triangle

Choose a symmetric gauge

=0, > +7

Classical energy

V., =E,) cosg, & d,

i<j
reverseq/\/ _ EUZ ei¢j ‘2 _ 4} | minimization gives one complex equation
e 2 ‘ defining a line in 3D phase space.




NEW PROPERTIES

Symmetry Usually, we deal with two states separated by a
The tetrahedral symmetry classical barrier, e.g., in a 2¢—junction,
A
group
2EJ B
Td o S4 via
is non-Abelian and contains electric OF
nontrivial representations, frustratign . L
5 5 0 T Q@
2 _ 12 12 2, 2
24=0= de =1"+1"+£7+3 +3". In the magnetically frustrated tetrahedron with
k=1

Push this doubfet to become the
ground state and use it as a quantum
bit.

This emulates a

spin 1/2 in a zero magnetic field|

the ideal starting point for the
construction
of a qubit.

conventional COS ¢-junctions, we encounter a
continuous classical degeneracy,
V)\
0

T @
Only when quantum fluctuations are accounted for,

we obtain a fluctuation-induced weak potential,
A

o

Ef
[ et emm—
0 I !

0 T
This enhances charge/quantum fluctuations without the
need to go to ultra-small junctions

-




SYMMETRIC MINIMAL-ENERGY STATES




\
‘Oz> - mol/
T
2
0,)

Within a full
guantum mechanical

description,
all the points

0 ®

are mixed through tunneling.

MIXING

The Hamiltonian describing the mixing
between the semi-classical states

0,),]0,).[0,)
takes the form
(0t t)

H=[t 0 t
t t 0

and produces the eigenvalues

—p Ed=—t and ES=2t.

The tunneling amplitude T
involves a non-trivial phase and

a modulus to be calculated within
a semi-classical approximation




TUNNELING

Combining with the tunneling action

Two inequivalent tunneling trajectories 4
produce an SS = :|..88(EJ / Ecj/
Aharononv-Bohm-Casher phase we find the tunneling amplitude
t~—h/T exp(-S. )cos| z(q, + .
exp Zm(Q +Q, /2e / p( ) [ (ql qz)]
®, /2 _ total charge
spectra: /l/ Ql2e
=4k =4k +1 =4k +2

t qubit

charges 2t —

island f




ISOLATED VS. CONNECTED TETRAHEDRON

Invert the inner island "0’
for symmetric measurement

PY m
<
island

ring



MEASUREMENT: OPERATOR o,

Unbiased state, carries no currents on
links and no polarization charges on the
islands.

Charge-biased state, carries currents on
links differentiating between the qubit-states i}

Similarly flux bias distinguishes states
|0> and |1>




TETRAHEDRAL QUBIT: CONCLUSION

Minimal system: three islands, 6 junctions.

Tetrahedral group contains many ‘redundant’
symmetries — protection

Needs both charge and flux frustration

Allows measurement in charge and phase
basis.



REALIZATION OF INDIVIDUAL SPINS/BITS AND
THEIR INTERACTION: MODULAR APPROACH

Fixed phase

®=0 ®=0orT

H H
Fixed phase

Longer chains: H=t 2, ,, 0%, 0 X, + constraint [], 07 =const

0069

Large capacitor preventing phase
changes of the end point.




JOSEPHSON IMPLEMENTATION OF
REPETITION CODE

00000 Phase at the end of the chain: y=+ 11/2

km Ok O ™m k O k=
|IGS 1> = |>>—>—>— > GS 2> = |« >

Protecting against the phase errors (in original basis) no
protection against flip errors: V() = - V, cos(2y) : V, is too small

OO 99.....
06004
06004
06004
L 0000®




WHERE IS THE CATCH?

Josephson elements are not discrete.
Noise suppression contains

B 5 \[(k+1)/2]
WE)" [, (95)
D, A AE,
A ~ transition amplitude t ~exp(—/2E,, / E.)

— we need large quantum fluctuations, i.e. E, /E ~1.
But large quantum fluctuations — low phase rigidity across
the chain V() = -V, cos(2y) with

V, ~ exp(-N2E. / E; ) -+ 00000 :

— for long chains V, becomes too small even for large number K of parallel
chains.




RESOLUTION: FIRST ATTEMPT.
FEW (K>1) PARALLEL CHAINS FOR N=2-4

Fixed phase Dynamical phase ®
o] <<
0.20 —mm™——————————————

R X W
e

0.05}

‘ ‘ ‘ ‘ 0.00: .

0 2 4

0.5 T -

S A
- - 0.4¢
V(CD) =K Vchain(q)) 0 3
Ceff =K Cchain ' :
Need K2 AVchain/ Ec chain >>1 0.2}
Ec 4 rhombi chain — Ec !
0.1k
Need K~10-20 i
0.0 ..........
0 2 4
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- ¢=n/2 o* rotations



MINIMALISTIC PROTECTED SYSTEM (1)

Josephson energy E,cos¢

dependence on junction parameters
1.75
1.5 EZ/EC
1.25
1
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0 2
(I) Gap to lowest excitation
1:2
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XX -
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MINIMALISTIC PROTECTED SYSTEM (2)

OO0 ¢

Gap to lowest excitation

10——mm———————————

O O O O O O ~TAE
> ‘I

Josephson energy E,cos¢

>< >< dependence on junction parameters




COMPARISON OF DIFFERENT DESIGNS

10— | 1.0,
A/Ec AIE.
0.8 0.8
0.6
0.4
Q- Q- R XXX
2 @RV RR®
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.
" EJE; ¢ —0o 00—




CHALLENGE OF NUMERICAL SIMULATIONS.

Typical ‘small’ array: 12 rhombi (48 junctions), 31 island.

Need at least 5 charge states on each island (better 7-9)
—OHOO— Total number of states: >531=10%° — impossible for any

classical computer.
The idea of computations:
. . ) X W
1. Diagonalize small chains, such as =

2. Compare the result with the ones obtained for chain of effective junctions

Find parameters (E,,E;) of effective —O—0O——

junctions. -

3. Use effective junctions to reduce the number of
degrees of freedom in the arrays.



1 RHOMBUS APPROXIMATION

o = N W P, o O
\ <
]
1
I%




CURRENTLY THE MOST PROMISING DESIGN.
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AJE;
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DEVICE

AccV SpotMagn Det W) Exp t—— 20pum
300kv 1.0 960x SE 19.7 777 Rutgers

AccV SpotMagn Det WD Exp FH—— 2um
300kV 10 7680x SE 19.7 777 Rutgers
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OSCILLATIONS OF SWITCHING

“Non-frustrated” regime

1 [@g far from (n+1/2) @,):

effective E; is large,

guantum fluctuations
are small

200 [

ISW, nA

160

AD = D2

DO, =D /2 -

7 8 9 10

B, G

. “Frustrated” regime

/ [Drz(N+1/2) D,):
effective E; is small,

quantum fluctuations
are large

The beating pattern - due
to the intermediate-size
loops between adjacent

rhombi chains with an area
4x(rhombus area)




OSCILLATIONS IN THE FRUSTRATED REGIME ®,=(N+1/2) @,
CORRELATED TRANSPORT OF PAIRS OF COOPER PAIRS

80 y ! . 1 : 1 . I . I -100
6 3

When @, ~ (n+1/2) @, the effective Josephson energy of a rhombus is small, and the
supercurrent of single Cooper pairs is blocked by quantum fluctuations.

The oscillations of I, with the period A® = ®,/2 are due to the correlated transport of
pairs of Cooper pairs with charge 4e.

The first harmonic (the un-attenuated

effect of @) is suppressed in the N=4 @
chain well beyond the linear order.



ISW, nA

COMPARISON WITH THE THEORY

I ¥ I L I U I

200 - il

21,

160 | T |11
120 b { i

50

80 |V | \ | . | \ |
6 7 8 9 10
B, G -
=
w25
The amplitude I, of the second x
harmonic is in good agreement with =
our numerical simulations ——
0
The experiment confirms that the L . L
) ) 2 3 4 5 6
rhombi fluctuate between their two EJE,
classical states = ~ <
“Sweet spot”:

relatively large A, and 1,






DIRECT MEASUREMENT OF CURRENT-PHASE DEVICE

CHARACTERISTICS

—————1|
e T
S |

——

]

0.04

0.03

0.021

0.011

0.00k

0.030 T T -
V o
2 @
0201 O
0.015} .
10+
“~ ¢
\~ @
0.005 1 P 4
% o o @
0'00(%).48 0.49 0.50 0.51 0.52
O/D,




ALTERNATATIVE DESIGNS TO CONSIDER

Double chain

Part of the hexagonal array.




EFFECT OF RANDOM STATIC CHARGES
ON ARRAY PROPERTIES.

Preliminary result:
1. Change by 10-30% of each rhombus effective capacitance.
2. Effects gets smaller for assymetric rhombi:

Junctions different by 30% in E,/E;

Equal pair

Equal pair




RELAXATION AND DECAY RATES OF
REALISTIC HIERARCHICAL STRUCTURES

Theory (+simulations):
Optimal regime E;= 6-8 E,
K=3 hierarchy (N=4)

N-1 N-1 Contributions from
R 7@5} ~T, [10@] - flux (area) variations between the
D, r D, loops
. SE SE )
r';'er =T,| y'—2 J ~ 1“2( J j - Josephson junction variations in the
! E, same loop




CONCLUSIONS

Parallel chains of approximately m-periodic discrete
Josephson elements should provide ‘topological’
protection from the noise: decoupling in higher
orders or suppressed linear order.

Problem of soft phase fluctuations in long chains
can be solved by hierarchical construction

Experimental realization shows appearance of -
periodicity which magnitude is Iin (rough)
agreement with theoretical predictions and
suppression of 2m-periodicity.



