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PLAN

 Protection: symmetry and  hardware error 

correction

 Josephson implementation: larger and 

minimalistic systems.

 Comparison between different designs

 Challenge of numerical simulations

 The most promising design (currently)

 Experiment: advances and problems.



REPETITION CODE
Classical repetition code (5 physical bits correct 2 errors):  

|Logical 0> = |00000>

|Logical 1> = |11111> 

Quantum repetition code:

|C 0> = |00000>

|C 1> = |11111>

- protect against the flips (X-errors)

|+> = 1/√2 (|C 0> + |C 1>) 

|- > = 1/√2 (|C 0> - |C 1>) 

To protect against phase errors (Z-errors) form 

|Logical +> = |+++++>

|Logical - > = |- - - - ->

In matrix form:

25 physical qubits to correct

two errors and store 1 logical 

|00000> + |11111>

|00000> + |11111>

|00000> + |11111>

|00000> + |11111>

|00000> + |11111>

|00000> - |11111>

|00000> - |11111>

|00000> - |11111>

|00000> - |11111>

|00000> - |11111>



HARDWARE ERROR CORRECTION

In matrix form:

25 physical qubits to correct

two errors and store 1 logical 

|00000> + |11111>

|00000> + |11111>

|00000> + |11111>

|00000> + |11111>

|00000> + |11111>

|00000> - |11111>

|00000> - |11111>

|00000> - |11111>

|00000> - |11111>

|00000> - |11111>

Main idea:

Find the physical system in which the lowest two states are given by the same

wave function as two logical states in the error correction scheme. All excited

states should be separated by a large gap from two lowest logical states.
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PROTECTED QUBIT:SYMMETRY VIEW

Protected Doublet:

Special Spin Hamiltonians H with a large 

number of (non-local) integrals of motion P, Q: 

[H,Pk]=0, [H,Qm]=0, [Pk,Qm]≠0

Pk

Qm

Simplest Spin Hamiltonian 

H=Σkl J x
kl σx

k σ
x
l + Σkl J z

kl σz
k σ

z
l 

Rows Columns

Pk=∏ l σz
l Qk=∏ l σx

l

Crucial issues:

1. Which model has a large gap Δ?

2. Which model is easiest to realize in Josephson junction arrays?

Any physical (local) noise term δH(t) commutes with

all Pk and Qm except a O(1) number of each.

Effect of noise appears in N order of the perturbation

theory:

δE~(δH(t) /Δ)N-1 δH(t) 



Solution of the model:

Ground states of one row:

|GS 1> = |→→→→→>  GS 2> = |←←←←←>

|→>=(|↑>+|↓>)/√2         |←>=(|↑>-|↓>)/√2

|+>=|GS 1>+ |GS 1> - has even number of spins down Pz|+>=|+>

|-> =|GS 1> - |GS 1> - has odd  number of spins down  Pz|->=-|->

Ground state of the whole system:

|1>= ∏ l |+>l and |0>= ∏ l |->l

EQUIVALENCE OF SYMMETRY AND 

ERROR CORRECTION

Symmetry:

Special Spin Hamiltonians H with a large 

number of (non-local) integrals of motion P, Q: 

[H,Pk]=0, [H,Qm]=0, [Pk,Qm]≠0

Special very symmetric Hamiltonian 

H=-Σjkl J x σx
jk σ x

jl - Σkl J z Pz
k P z

l

Pz
k = ∏ l σz

kl - row product

Rows Columns

Pk=∏ l σz
kl Ql=∏ k σx

kl

All Pk and Ql anticommute

Ground state of the model Hamiltonian is the doublet of repetition code!



TWO ALTERNATIVES

 Identify and implement very symmetric 

Hamiltonian with a smallest possible 

number of Josephson junctions and islands, 

all very well controlled. 

Example: tetrahedral symmetry. 

 Implement larger arrays with only 

approximate symmetries that compensate a 

lack of control by the size of the array. 



TETRAHEDRAL QUBIT: SMALLEST JJ ARRAY
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NEW PROPERTIES

Usually,  we deal with two states  separated by a 

classical barrier, e.g., in a 2jjunction,

0 p j

0

2EJ

In the magnetically frustrated tetrahedron with 

conventional cos jjunctions, we encounter a 

continuous classical degeneracy, 

0 p j
0

V

Only when quantum fluctuations are accounted for, 

we obtain a fluctuation-induced weak potential,

0 p j
0

Ef

This enhances charge/quantum fluctuations without the 

need to go to ultra-small junctions

The tetrahedral symmetry 

group

Td or S4

is non-Abelian and contains

nontrivial representations,

Symmetry

  

24  g  d
k

2  12 12  22  32  32

k 1

5

 .

Push this doublet to become the 

ground state and use it as a quantum 

bit. 

This emulates a 

spin 1/2 in a zero magnetic field,

the ideal starting point for the 

construction 

of a qubit.

via

electric 

frustration
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The Hamiltonian describing the mixing

between the semi-classical states

takes the form

and produces the eigenvalues

MIXING

Within a full 

quantum mechanical 

description, 

all the points   

are mixed through tunneling.
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The tunneling amplitude  t 
involves a non-trivial phase and

a modulus to be calculated within 

a semi-classical approximation



TUNNELING

Two inequivalent tunneling trajectories 

produce an 

Aharononv-Bohm-Casher phase
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ISOLATED   VS. CONNECTED TETRAHEDRON
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MEASUREMENT: OPERATOR Z
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Similarly flux bias distinguishes states

|0> and |1>



TETRAHEDRAL QUBIT: CONCLUSION

Minimal system: three islands, 6 junctions. 

 Tetrahedral group contains many ‘redundant’ 

symmetries → protection

 Needs both charge and flux frustration

 Allows measurement in charge and phase 

basis. 



REALIZATION OF INDIVIDUAL SPINS/BITS AND 

THEIR INTERACTION: MODULAR APPROACH

H H

Fixed phase 

Φ=0 or π

Fixed phase 

Φ=0

Discrete states of each rhombus: |φ = +π/2>, |φ = -π/2>, 

Only simultaneous flips are possible: H = t σx
k σ

x
l 

Longer chains:  H=t Σk,m  σ
x
k σ

x
m  + constraint ∏k σ z

k=const 

Large capacitor preventing phase 

changes of the end point. 

Φ=± π/2



JOSEPHSON IMPLEMENTATION OF 

REPETITION CODE

H = t Σk,m  σ
x
k σ

x
m  + constraint ∏k σ z

k=const

|GS 1> = |→→→→→>  GS 2> = |←←←←←>

Protecting against the phase errors (in original basis) no 

protection against flip errors: V(ψ) = - V2 cos(2ψ)  :  V2 is too small 

Phase at the end of the chain: ψ=± π/2

Ψ=±π/2



WHERE IS THE CATCH?

 Josephson elements are not discrete. 

Noise suppression contains 

Δ ~ transition amplitude 

→ we need large quantum fluctuations, i.e. E2J/EC~1.

But large quantum fluctuations → low phase rigidity across

the chain V(ψ) = - V2 cos(2ψ) with

→ for long chains V2  becomes too small even for large number K of parallel 

chains. 
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RESOLUTION: FIRST ATTEMPT.
FEW (K>1) PARALLEL CHAINS FOR N=2-4

Fixed phase 

Φ=0

V(Φ) = K Vchain(Φ)

Ceff = K Cchain

Need K2 Δvchain / Ec chain >>1

Ec 4 rhombi chain ~ Ec

Need K~10-20

Dynamical phase Φ

Gap too small



PROTECTED QUBIT (3RD LEVEL)

0
0      idle
/2   x rotations

Decoupled phase degree of freedom 



MINIMALISTIC PROTECTED SYSTEM (1)



Measuring current

Electrostatic gate

Josephson energy E2cosϕ

dependence on junction parameters

Gap to lowest excitation 



MINIMALISTIC PROTECTED SYSTEM (2)



Measuring current

Josephson energy E2cosϕ

dependence on junction parameters

Gap to lowest excitation 



COMPARISON OF DIFFERENT DESIGNS



CHALLENGE OF NUMERICAL SIMULATIONS. 

Typical „small‟ array: 12 rhombi (48 junctions), 31 island. 

Need at least 5 charge states on each island (better 7-9)

Total number of states: >531=1020 → impossible for any 

classical computer. 

The idea of computations:

1. Diagonalize small chains, such as

2. Compare the result with the ones obtained for chain of effective junctions

Find parameters (E2,EC) of effective 

junctions. 

3. Use effective junctions to reduce the number of 

degrees of freedom in the arrays. 



1 RHOMBUS APPROXIMATION

=



CURRENTLY THE MOST PROMISING DESIGN.



DEVICE 



OSCILLATIONS OF SWITCHING 

CURRENT

“Non-frustrated” regime

[R far from (n+1/2)0]:

effective EJ is large, 

quantum fluctuations

are small

“Frustrated” regime 

[R(n+1/2)0]:

effective EJ is small, 

quantum fluctuations 

are large

The beating pattern - due 

to the intermediate-size 

loops between adjacent 

rhombi chains with an area 

4(rhombus area)L= 0

L= 0/2

R 0/2

R 0



OSCILLATIONS IN THE FRUSTRATED REGIME R(N+1/2) 0:

CORRELATED  TRANSPORT OF PAIRS OF COOPER PAIRS

When R ~ (n+1/2) 0, the effective Josephson energy of a rhombus is small, and the

supercurrent of single Cooper pairs is blocked by quantum fluctuations.

The oscillations of ISW with the period L= 0/2 are due to the correlated transport of

pairs of Cooper pairs with charge 4e.

The first harmonic (the un-attenuated

effect of L) is suppressed in the N=4

chain well beyond the linear order. 



R = 0/2

COMPARISON WITH THE THEORY

The amplitude I2 of the second

harmonic is in good agreement with

our numerical simulations

The experiment confirms that the 

rhombi fluctuate between their two 

classical states

“Sweet spot”:

relatively large 12 and I2

2I0



DIRECT MEASUREMENT OF CURRENT-PHASE DEVICE 

CHARACTERISTICS

N = 6

Device

SQUID

jA jB



DIRECT MEASUREMENT OF CURRENT-PHASE DEVICE 

CHARACTERISTICS



ALTERNATATIVE DESIGNS TO CONSIDER

Double chain

Part of the hexagonal array. 



EFFECT OF RANDOM STATIC CHARGES

ON ARRAY PROPERTIES.  

Preliminary result: 

1. Change by 10-30% of each rhombus effective capacitance.

2. Effects gets smaller for assymetric rhombi:

Equal pair Equal pair

Junctions different by 30% in EJ/EC



RELAXATION AND DECAY RATES OF 

REALISTIC HIERARCHICAL STRUCTURES
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Theory (+simulations):

Optimal regime EJ ≈ 6-8 EC

K=3 hierarchy (N=4)



CONCLUSIONS

 Parallel chains of approximately π-periodic discrete
Josephson elements should provide ‘topological’
protection from the noise: decoupling in higher
orders or suppressed linear order.

 Problem of soft phase fluctuations in long chains
can be solved by hierarchical construction

 Experimental realization shows appearance of π-
periodicity which magnitude is in (rough)
agreement with theoretical predictions and
suppression of 2π-periodicity.


