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“In a machine such as this there are very many other problems due to imperfections. . . .
At least some of these problems can be remedied in the usual way by techniques

such as error correcting codes . . . But until we find a specific implementation

for this computer, | do not know how to proceed to analyze these effects.”

R.P. Feynman

OUtIine “Quantum Mechanical Computers”
Optics News, February 1985

Basics of quantum error correction

- digitizing quantum errors

- a discrete group theory, finding good codes

- circuits for error correction, fault tolerance
Codes for integrated circuits

- surface code

- the basic device experiments

- new tools for fault tolerance:

making and braiding holes
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Scheme for reducing decoherence in quantum computer memory

Peter W. Shor*
AT&T Bell Laboratories, Room 2D-149, 600 Mountain Avenue, Murray Hill, New Jersey 07974
(Received 17 May 1995)

Recently, it was realized that use of the properties of quantum mechanics might speed up certain computa-
tions dramatically. Interest has since been growing in the area of quantum computation. One of the main
difficulties of quantum computation is that decoherence destroys the information in a superposition of states
contained in a quantum computer, thus making long computations impossible. It is shown how to reduce the
effects of decoherence for information stored in quantum memory, assuming that the decoherence process acts
independently on each of the bits stored in memory. This involves the use of a quantum analog of error-
correcting codes.



Two great things about this paper:

1) Made evident the fact (clarified by others) that
quantum errors are discrete.

For a one-qubit system: General continuous-time
Bath-System quantum

T{dt'exp ElBi(t')@)Si(t') _ evolution

B®I+B,®X+B, QY +B,®Z il matrices

If error correction procedure corrects for “bit flip” (X),
“n-phase error” (Z), then it also corrects Y=iZX, and,
by linearity, corrects the most general system-bath
coupling.



Two great things about this paper:

2) Found a code that corrects against
single-qubit error.
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Triple-repetition code inside itself.



Quantum error correction
implemented by quantum circuits
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The three-bit repetition code



Calderbank-Shor [also Gottesman], 1997

A group theory for codes:
stabilizers

Groups:

1) Pauli group P: all products of Pauli operators on a set
of qubits, e.g., IXZXXYZ...

2) Stabilizer group S: abelian subgroup of P.
States protected by code are +1 eigenstates of S

3) Centralizer C(S): operators in P that commute with
all operatorsinS.
(a non-abelian group).

The theorem: errors can be detected as long as they
are not in C(S)\S.

This assured that there would be a huge number of codes.



The eal'|y favorite: Most efficient CSS code that corrects

Steane 7-qub|t COde one general quantum error (X, Y, Z)
All gates are essentially CNOTs
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Distressingly difficult experiment!
6 i X
7 5 x Lots of qubits, lots of long-distance

coupling (regularity is not geometric)



Analysis of fault tolerance:

Consider algorithm requiring N qubits and T time steps. Without error correction,
the probability of failure for a run of the algorithm is estimated as

TNp

Not small unless p<10-'° for runs of interest. Consider a code which will correct
one error, so that p_,= Cp?. C is a couting factor near 10,000. Now the probability
of failure is

TNCp?

Slightly improved for small p, but not good enough. But there are many codes,
Including ones that correct x errors. We can choose x with a knowledge of N.
So the failure probability becomes

T(N)NC[x(N)] p XN*1 = poly(N)C[x(N)] p XN)*1

So long as C[x] doesn’t grow too fast with x, then x can be chosen such that for
some finite p, this expression can always be made <<1.

However:



However:

For many families of codes the counting factor grows incredibly fast with x:

Clx]= x=

One solution: for special sequences of codes, those produced by concatenation,
The scaling is better:

C[x] = c*;

py, = 1/c.

For various codes, this gave p, = 10 or 10~.



Concatenation: ~~
regular, but produces N

very non-local circuits

Y

FAULT-TOLERANT QUANTUM COMPUTATION

—O

arXiv:quant-ph/9712048 - ~
JOHN PRESKILL @
California Institute of Technology, Pasadena, CA 91125, USA L

Figure 14: Concatenated coding. Each qubit in the block, when inspected at higher resolu-
tion, is itself an encoded subblock.

-gates of coded qubits: transversal construction
(also geometrically highly nonlocal)

L
Even more to do to get Data ° ®
universal computation * _
-magic states A
L/
-teleported gates Data D T o~
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Other development of 1996-7:

Quantum error correction with imperfect gates

A. Yu. Kitaev
L.D.Landaw fastitute for Theovetical Physics,
117940, Kosygina St 2
email: kitaev@itp.uc.ru

September 25, 1998

Abstract

Quaniium ercor correctioss can bo perigrmed fault-caler Ankh Tlus zllow
A rmanling stato intack {with arbitrery smuall eceon “probability) for arbit
Eiue ak a constant decoherence rate.

In Quantum Communication, Comput-

ing, and Measurement, O. Hirota et al., Eds. (Ple-

num, New York, 1997).

Stabilizer generators XXXX, 2772,

Stars and plaquettes of interesting
2D lattice Hamiltonian model

Toric Code/Surface Code
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Surface code error correction: qubits (abstract) in fixed 2D square
arrangement (“sea of qubits”), only nearest-neighbor coupling are possible
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Colorized thanks to
Surface code Jay Gambetta and John Smolin

O Initialize Z syndrome | ) i}
qubits to |0) Implementing the “surface code:

-- in any given patch, independent of
the quantum algorithm to be done:



Surface code

O CNOT left array



Surface code

O CNOT down array



Surface code

O CNOT right array



Surface code fabric

O CNOT down array



Surface code fabric

- measure in 0/1 basis




Surface code

O Shifted CNOT right array



Surface code

O Shifted CNOT down array



Surface code

O Shifted CNOT left array



Surface code

O Shifted CNOT up array



Surface code fabric

..@....

O Repeat over and over....




Another view of the 2D Surface Code

With these 13 qubits, one gets a standard
code that will correct for one error:

4-qubit QND parity measurement:
@),

Red diamond: the same in the
conjugate basis

S. Bravyi and A. Yu. Kitaev, “Quantum codes on a lattice with boundary,”
Quantum Computers and Computing 2, 43-48 (2001).

M. H. Freedman and D. A. Meyer,

“Projective plane and planar quantum codes,”

Found. Comp. Math. 1, 325 (2001)



Observations:

Calculated fault tolerant threshold:

p~0.7%

Crosstalk assumed “very small”, not analyzed

Now p > 1 %, according to Wang, Fowler,
Hollenberg, Phys. Rev. A 83,
020302(R) (2011)

Residual errors decrease exponentially with lattice size

Gates: CNOT only (can be CPHASE), no one qubit gates

If measurements slow: more ancilla qubits needed, no threshold penalty

NB: Error threshold for 4-qubit
Parity QND measurement is
around 2

2% <p <12% Q

(0]



How to compute with the surface code:

24-qubit structure

‘o
&

Austin G. Fowler, Ashley M. Stephens, and Peter Groszkowski,

“High threshold universal quantum computation on the surface code,”
Phvs. Rev. A 80. 052312 (2009).

S

8 ZZZ7 checks
12 XXXX checks

To get a qubit:

Stop measuring one
Plaquette

¢

(Freedman and Meyers,
1998)
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Logical gates (X and Z) on the “hole” qubit

To get a qubit:

Stop measuring one
Plaquette

(Freedman and Meyers,
1998)

C O O

Austin G. Fowler, Ashley M. Stephens, and Peter Groszkowski,

“High threshold universal quantum computation on the surface code,”
Phvs. Rev. A 80. 052312 (2009).
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Genuine defect: @
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O ® —O— Ghostdefect: @
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E. Dennis, A. Kitaev, A. Landahl, and J. Preskill,
“Topological quantum memory,”
J. Math. Phys. 43, 4452-4505 (2002).

No ghost defects: 2D random bond Ising,
FM/PM transition at 10% error rate

With ghosts: 3D random plaquette model,
Transition at 1% error rate

Experimentalists can skip the next 6 slides
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Convenient to associate a qubit with a pair of holes.
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CNQOT: braid a hole from one qubit
in between the holes embodying
the other qubit.

Error correction continues throughout
gate operation

Superior to “tranversal” technique



Subsystem concept leads to many new codes... PHYSICAL REVIEW A 81, 032301 (2010)

F | V e - S q u a r e S C O d e Topological subsystem codes

H. Bombin

Suchara, Bravyi, Terhal, arxiv:1012:0425

Qubits are at vertices. Periodic boundary conditions (torus).
G=< K, >where K, are 2-qubit Paulilink operators.

e Dashed links are ZZ.

(clockwise say).

* Solid links between
squares are Z/Z.

Note that solid links
anticommute when they
overlap on one qubit.




Subsystem stabilizer codes
Non-Abelian group G with elements <G> where G.
have, say, local support on a lattice.

Abelian center of group S.

Operators in C(S) (in but not in G) are logical
operators for protected qubits.

Operators in G are logical operators
for gauge qubits (extra unused qubits)

® -




Conclusion:
quantum error
correction in
your future

* Original insights still
being played out

* Maybe a good :
evolutionary pathto LA AT gl A\

Concept (IBM) of surface cgde fabric with

quantum ComPUter Superconducting qubits and coupling resonators
hardware

“In a machine such as this there are very many other problems due to imperfections. . . .
At least some of these problems can be remedied in the usual way by techniques

such as error correcting codes . . . But until we find a specific implementation

for this computer, | do not know how to proceed to analyze these effects.”

R.P. Feynman
“Quantum Mechanical Computers”
Optics News, February 1885



