#### How to be in two places at the same time



Andrew N. Cleland
Department of Physics
University of California
Santa Barbara



#### collaborators:

John M. Martinis (UC Santa Barbara) Michael Geller (U Georgia - Athens)



21 Juin 2011 15:00

#### quantum mechanics

Quantum mechanics imposes disagreeable limits on physicists:

- 1. You can only calculate probabilities
- 2. Simultaneous measurements are often limited in precision:

$$m\Delta v \cdot \Delta ext{X} \geq \hbar$$
 Heisenberg uncertainty principle

you cannot *precisely* measure velocity and position at the same time

#### quantum mechanics

Quantum mechanics is the most precise physical theory:

atomic hydrogen 1S-2S transition frequency:

experiment: 2 466 061 413 187 103 Hz

theory: 2 466 061 413 2XX XXX Hz

limited by precision of physical constants

"Measurement of the H 1S-2S transition" M. Niering et al. *Phys. Rev. Lett.* (2000) MPI Garching & Observatoire de Paris & LKB, Paris



## historical perspective





#### Each atom has specific wavelengths



hydrogen







oxygen





mv





$$\widehat{H}|\Psi\rangle = i\hbar \; \frac{\partial}{\partial t}|\Psi\rangle$$

wave nature of electrons in atoms



## quantum mechanics



laser



atomic clock / GPS



MRI



photosynthesis



quantum computer

## classical perceptions

#### Our macroscopic world is classical:



off







#### quantum superposition

Quantum mechanics allows *superpositions* of states:



A light bulb can be both on and off .... at the same time

### quantum superposition

A measurement forces the system to "choose":

"collapses" the quantum state



cleland / phase qubit group

#### quantum superposition

*Measurement* forces the system to "choose":



You never see both "on" and "off" at the same time

## a simple experiment with light

Two-slit experiment with light interference fringes laser

## a simple experiment with light

Two-slit experiment with **light** photons



## matter's wave properties

Two-slit experiment with light photons electrons



#### matter's wave properties

Interference one-at-a-time requires simultaneous



and then interfere with itself

...The electron is "in two places at the same time"

cieland / phase qubit group

ucsb

## splitting a cat



"Schrödinger's cat"



# splitting a cat



#### superposition state



What are the physical requirements?

Are there philosophical implications?

Does the cat's thinking affect this process?

#### coherence requirements

What is required to observe quantum effects?

- 1. Weak environment (no "looking")
- 2. Preparing a "split" quantum state
- 3. Measuring the quantum state

Does quantum mechanics only work for small things (atoms, electrons)?

#### Environment

The outside world is always "measuring":

- gas molecules
- mechanical forces
- electric forces

These cause quantum

collapse ("measurement")

Must minimize!

The outside world has non-zero temperature:



Thermal vibrations destroy quantum states:

Must minimize!

dilatational Mechanics of dilatation: atoms resonator 6 billion oscillations per second human dilatation hair time

# dilatational resonator











#### Classically:

- energy is continuous
- all values possible

#### Quantum:

- energy is discrete
- only certain values

cieland / phase qubit group

ucsk

# dilatational resonator



A microwave frequency tuning fork









second excited state

first excited state

quantum ground state

cleland / phase qubit group

ucsb

# dilatational resonator











Higher frequency "tuning forks" have larger energy level spacing

cieland / phase qubit group

ucsk

# dilatational resonator



#### Cool to quantum ground state:



• need  $T \ll h f/k_B$ frequency f = 6 GHz  $\Rightarrow T \ll 300$  mK

dilution refrigerator 20 mK



time

#### Reduce environment effects:

- decay due to environment
- lifetime ~40 oscillations

sufficient for quantum operation



cleland / phase qubit group

#### resonator quantum control

#### Measure a mechanical resonator in the quantum limit?

- 1. Interpose a quantum two-level system ("quantum violin")
- 2. Two-level system and resonator form coherent system
- 3. Complete quantum control & measurement possible



coupled system quantum coherent allows complete quantum measurement & control

The superconducting phase qubit: A type of "quantum violin"

- electronic device
- can change frequency
- quantum control
- quantum measurement
- ⇒ Quantum control of mechanical resonator







cleland / phase qubit group

ucsb







cleland / phase qubit group

ucsk

- Tune qubit frequency
- Measure resonance ("pluck & listen")
- Qubit tunes as expected





cleland / phase qubit group

ucs



## quantum ground state

Qubit as thermometer

0.3

0.2

0.1

-200

excited state probability

Measure resonator temperature

resonator

-100

Sensitive to a single quantum



measure

start

### quantum ground state

- Qubit as thermometer
- Measure resonator temperature
- Sensitive to a single quantum





#### first excited state

- Excite qubit
- Tune to resonance
- Create sympathetic resonance:
- Transfer one quantum to resonator





oscillation in qubit:

- excite with sympathetic resonance
- single quantum exchange
- quantum resonator

cleland / phase qubit group

ucsb

#### first excited state

- Excite qubit
- Tune to resonance
- Create sympathetic resonance:
- Transfer one quantum to resonator







ground

state



excited state

cleland / phase qubit group

ucsb

#### superposition states



#### Schrödinger's cat

We are still very far from a "cat superposition"



#### Requirements:

- Minimal thermal noise
- Very weak coupling to environment
- Quantum coherence over long enough times

### How to be in two places at the same time



Andrew N Cleland John M Martinis

Rami Barends
Jörg Bochmann
Yu Chen
(Max Hofheinz)
Matteo Mariantoni
(Haohua Wang)
Yi Yin

Julian Kelly Erik Lucero Peter O'Malley Daniel Sank James Wenner Ted White

Anthony Megrant Charles Neill (Aaron O'Connell) Amit Vainsencher

postdocs

support: NSF DARPA IARPA



graduate students

cleland / phase qubit group

ucsl