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Quantum mechanics imposes disagreeable
limits on physicists:

1. You can only calculate probabilities

2. Simultaneous measurements
are often limited in precision:

mA']] . AX > h Heisenberg uncertainty principle

‘ you cannot precisely measure velocity and
position at the same time




Quantum mechanics is the most precise
physical theory :

atomic hydrogen 1S-2S transition frequency:

experiment: 2466 061413 187 103 Hz

theory: 2466 061 413 2XX XXX Hz

limited by precision of I

physical constants

“Measurement of the H 15-2S transition”
M. Niering et al. Phys. Rev. Lett. (2000)
MPI Garching & Observatoire de Paris & LKB, Paris




Each atom has specific wavelengths

hydrogen

helium

oxygen

carbon

wave
nature of
electrons
In atoms
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Our macroscopic world is classical:




Quantum mechanics allows superpositions of
states:
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A light bulb can be both on and off

.... at the same time




A measurement forces the system to “choose”:
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An observation (a measurement)
‘collapses” the quantum state




Measurement forces the system to “choose”:
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Two-slit experiment with light

Interference
fringes




Two-slit experiment with photons
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Two-slit experiment with electrons
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Interference one-at-a-time requires simultaneous
passage

...must pass
both slits at the

same time
[

I and then interfere
- with itself

one electron ...The electron is
“In two places at the
same time”




“Schrodinger’s cat”
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What are the physical requirements?
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What is required to observe quantum effects?

1. Weak environment (no “looking”)

2. Preparing a “split” quantum state

3. Measuring the quantum state

Does quantum mechanics only work for
small things (atoms, electrons)?




The outside world is always “measuring”:

\

e gas molecules These cause quantum
* mechanical forces > collapse (“measurement”)
e electric forces

The outside world has non-zero temperature:

Thermal vibrations
~ destroy quantum states:




dilatational Mechanics of dilatation:
resontor ©c 06 0 0 o

6 billion oscillations per second

human

dilatation




dilatational
resonator

distance
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A microwave frequency
tuning fork
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Classically:
* energy iIs continuous
e all values possible
Quantum:

distance




dilatational
resonator

distance
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A microwave frequency
tuning fork

second excited state

first excited state

guantum ground state
distance




dilatational
resonator

distance
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A microwave frequency
tuning fork

» Higher frequency
{ nf “tuning forks”
{ nr have larger energy
level spacing

distance




dilatational  Cool to quantum ground state:

r'ESOn eneed T < h f/kg
- frequency f = 6 GHz
— T < 300 mK
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Reduce environment effects:
e decay due to environment

e lifetime ~40 oscillations

v

distance




Measure a mechanical resonator in the quantum limit?
1. Interpose a quantum two-level system (“guantum violin”)
2. Two-level system and resonator form coherent system
3. Complete quantum control & measurement possible
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measurememieasurement  quantum
system system two-level resonator

system




The superconducting phase qubit:
A type of “guantum violin”

e electronic device

e can change frequency

e gquantum control

e guantum measurement

— Quantum control of
mechanical resonator
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 Tune qubit frequency
e Measure resonance (“pluck & listen”)
e Qubit tunes as expected
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frequency (GHz)

qubit tuning
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coupling strength Q =124 MHz
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e Qubit as thermometer
* Measure resonator temperature
e Sensitive to a single quantum

excited state
probability
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Qubit tuning (MHz)




e Qubit as thermometer
* Measure resonator temperature
e Sensitive to a single quantum

resonator
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e Excite qubit
* Tune to resonance
e Create sympathetic resonance: ' <

» Transfer one quantum _ tune qubit
to resonator ,

1.0 T | T | I | I

08 Rabi oscillations oscillation in it:

excite with

05 * SYMRALREHS resonance

V

0.4 * single quantum exchange

excited state
probability

0.2 * guantum resonator

0.0

10 20 {0]
time (nanoseconds)




e Excite qubit
e Tune to resonance
e Create sympathetic resonance:

» Transfer one quantum
to resonator
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resonator: one quantum
> first excited state
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excited state
probability

excited state
probability
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Lifetime of excited
state as expected.:
7 nanoseconds
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10 20 30
time (nanoseconds)

Superposition state

Decay from excited
state to ground state

20 40 60
time (nanoseconds)

10 trillion atoms




We are still very far
from a “cat
superposition”

Requirements:
* Minimal thermal noise
e Very weak coupling to environment

* Quantum coherence over long enough times
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