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Abstract— We consider the stabilization of the dynamical
state of a superconducting qubit. In a series of papers, A.
Korotkov and his co-workers suggested that continuous weak
measurement of the state of a qubit and applying an appro-
priate feedback on the amplitude of a Rabi drive, should allow
maintaining the coherence of the Rabi oscillations on an infinite
horizon. Here, in the aim of approaching a metrological applica-
tion of these persistent Rabi oscillations, we study a new variant
of such strategies based on performing strong measurements
in a discrete-in-time manner and applying the measurement
record to correct the phase of the Rabi oscillations. Noting that,
such persistent Rabi oscillations can be seen as an amplitude-
to-frequency convertor (converting the amplitude of the Rabi
micro-wave drive to a precise frequency), we propose another
feedback layer (consisting of a simple analog phase locked loop)
to compensate the low frequency deviations in the amplitude
of the Rabi drive.

I. INTRODUCTION

Recent advances on superconducting qubits have led to
lifetimes and coherence times of several microseconds [11],
[6]. In parallel, the advances on quantum-limited Josephson
parametric amplifiers [16], [1], [12] have made it possible to
measure continuously the state of a qubit without adding
mostly classical noise. Indeed, Quantum Non-Demolition
(QND) measurement of a superconducting qubit coupled
to a microwave resonator through a Josephson parametric
amplifier has been recently achieved in the experiment
of [17]. All these advances open the doors to invest real-
time quantum feedback schemes for preparing and protecting
various quantum states of interest in quantum information or
metrology [14].

In a series of papers [13], [18], [9], A. Korotkov and co-
workers proposed feedback strategies to stabilize the coher-
ent oscillations in a qubit when driven by a resonant Rabi
drive. While an important difficulty in the initial scheme [13]
was the necessity to solve in real-time a Bayesian filter
equation, in a second scheme, Korotkov proposed a simple
analog scheme to stabilize the Rabi oscillations [9].

This stabilization problem can have a very important
metrological application. Indeed, the Rabi oscillations of a
qubit can be seen as an amplitude-to-frequency convertor,

This work was partially supported by the ”Agence Nationale de la
Recherche” (ANR), Projet Jeunes Chercheurs EPOQ2 number ANR-09-
JCJC-0070, and by the EMERGENCES program Contract of Ville de Paris.

INRIA Paris-Rocquencourt and Yale University (Applied Physics),
mazyar.mirrahimi@inria.fr

Laboratoire Pierre Aigrain, Ecole Normale Suprieure, CNRS,
benjamin.huard@lpa.ens.fr

Yale University (Applied Physics) and Collège de France,
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converting the amplitude of the resonant drive to the fre-
quency of the induced Rabi oscillations. Therefore, a high-
precision measurement of this frequency leads to a high-
precision measurement of the microwave drive’s amplitude
allowing the stabilization of the microwave generator’s out-
put power. However, due to the dephasing of the qubit, these
oscillations admit very short lifetimes and are rapidly invaded
by phase noise. This is why compensating this dephasing in
a feedback procedure is very important.

Here, in the aim of addressing this metrological applica-
tion, we propose a new closed-loop phase correction scheme
that maintains with an acceptable fidelity the phase of the
coherent oscillations and furthermore allows for a correction
of the low-frequency deviations in the Rabi drive amplitude.
The main idea consists in correcting the phase of the coherent
oscillations in a discrete-in-time manner and during the time
between two corrections to accumulate information on the
amplitude of the Rabi drive. Indeed, similarly to [5], we
propose to perform strong qubit measurements at every half
period of the desired Rabi oscillation. The phase error can
then be corrected by applying ⇡-pulses each time we observe
the opposite phase to the one expected. A second feedback
layer, based on the output of a continuous weak measurement
of the qubit, allows for correcting the deviations in the
Rabi drive amplitude and stabilizing it around some nominal
value.

Throughout this paper, we will perform simulations by
considering the parameters that should be quite easily achiev-
able in experiments with charge qubits such as transmons.
Also, while the second feedback layer consists of a simple
analog phase locked loop, the first one can be implemented
in a real-time experiment using present digital electronics
like Field Programmable Gate Array boards.

In the next section, we will start with a brief introduction
to the circuit QED model and the dispersive measurement of
the qubit. Also, we will show how, through a quantum Zeno
effect, discrete-in-time strong measurements can enhance
the coherence of the Rabi oscillations. Finally, we will
show how a simple feedback scheme based on the output
of these measurements and corrective ⇡-pulses can lead to
persistent Rabi oscillations. In Section III, we will add the
second feedback layer and we will show how a simple Phase
Locked Loop based on the output of a continuous weak
measurement, can stabilize the Rabi drive amplitude against
low frequency deviations.
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Fig. 1. Scheme of the transmon qubit coupled to a superconducting
resonator with strength g =

p
!r!eg

Cc

2
p

Cr(Cc+Cq)
(see e.g. [3]). The

qubit state can be manipulated and read out dispersively using microwave
fields sent to the input port and measured at the output port of the amplifier.

II. DISCRETE-TIME STRONG MEASUREMENT AND
FEEDBACK

A. Circuit QED model

We consider here a quantum circuit consisting of a trans-
mon qubit [7] of transition frequency !

eg

coupled to a
superconducting resonator of frequency !

r

(see the scheme
of Fig. II-A). We further assume this coupling to be in
the dispersive regime, meaning that the coupling strength
is smaller than the detuning between the resonator and qubit
frequencies. Driving the resonator at its resonance frequency
by microwave signals, the effective Hamiltonian after a
rotating wave approximation is given as follows:

Heff = ~!eg

2

�
z

+ ~�a†a�
z

+ ~[✏
d

(t)a† + ✏⇤
d

(t)a]. (1)

Here a is the field annihilation operator, and �
z

= |eihe| �
|gihg| is the Pauli operator in qubit space and ✏

d

is the
complex amplitude of the microwave drive at frequency
!
r

. Finally, � is the dispersive coupling strength given by
� = ↵g2/�(� + ↵) [7] where ↵ is the anharmonicity of
the transmon qubit defined as ↵ = !

fe

� !
eg

(!
fe

being
the transition frequency between the first and second excited
states), g is the coupling strength between the qubit and
resonator (see Fig. II-A) and � = !

eg

� !
r

. Indeed, we
are in the regime where |�| � g (in fact, we even assume
that |�| � 2g

p
n̄ where n̄ is the average number of photons

in the resonator).

B. Dispersive measurement and reduced master equation

In the Born-Markov approximation, the Lindblad master
equation describing the evolution of the density matrix of
the coupled qubit-resonator is given by [2], [10]

d

dt
⇢
t

= � i

~ [Heff, ⇢t]

+ D[a]⇢
t

+ �1D[��]⇢t + �
�

D[�
z

]⇢
t

/2, (2)

where  is the resonator’s decay rate (through its coupling to
the transmission line), �1 is the qubit decay rate, �

�

the pure

dephasing rate, �� = |gihe| is the qubit lowering operator
and D[A] the damping superoperator

D[A]⇢ = A⇢A† �A†A⇢/2� ⇢A†A/2.

Starting with a state of the form |gi ⌦ |0i (resp. |ei ⌦ |0i)
where |0i is the vacuum state of the associated resonator’s
mode, and neglecting the energy loss due to �1 (in practice
�1 ⌧  allows to decouple adiabatically the qubit dynamics
from the resonator), the state at time t is given by |gi ⌦
|↵

g

(t)i (resp. |ei ⌦ |↵
e

(t)i ) where
��↵

g(e)(t)
↵

are coherent
states of the resonator with complex amplitudes determined
by

d
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(t)

↵
g

(0) = ↵
e

(0) = 0. (3)

In this work, we are interested in measurement scenarios
where the measurement drive is turned on with a constant
(rather strong) amplitude ✏

d

(t) ⌘ ✏
d

2 R on a short time
interval (comparable to the resonators decay time �1). If
the drive is turned on during a time ⌧ only, the coherent
states ↵

g

and ↵
e

are given by (see Fig. 2)

↵
g
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These coherent states act as pointer states for the qubit.
Detection of the in-phase quadrature amplitude I = ha +

a†i/2 allows us to distinguish between these two coherent
states and thus readout the state of the qubit. Following the
derivation of Ref. [4], one finds the laboratory frame reduced
qubit master equation

d

dt
⇢
t

= �i
!ac(t)

2

[�
z

, ⇢
t

]

+ �1D[��]⇢t + (�
�

+ �
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(t))D[�
z

]⇢
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/2. (4)

Here,

�
m

(t) = 2�Im(↵
g

(t)↵⇤
e

(t)) = �2�Im(↵
g

(t)2),

is an additional dephasing due to the coupling to the popu-
lated resonator and

!ac(t) = !
eg

+B(t),

with B(t) = 2�Re(↵
g

(t)↵⇤
e

(t)) = �2�Re(↵
g

(t)2) the ac-
stark shift experimentally measured in Ref. [15].

C. Measurement record and quantum Zeno effect
As discussed above, the average effect of the measurement

procedure can lead to additional dephasing. Furthermore, this
dephasing rate �

m

increases with ✏
d

in a quadratic way.
Therefore, stronger measurements should increase dramat-
ically the dephasing. However, we will see through this
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Fig. 2. Evolution of the field state in the resonator when the drive ✏̄d/2⇡ =
22 MHz is turned on for 17 ns and is then turned off. The cavity pull is
chosen to be �/2⇡ = 5 MHz and the cavity decay rate /2⇡ = 20 MHz.
The main plot represents the evolution of the two possible field states ↵g

and ↵e over 100 ns in the quadrature space, the time being color coded. The
corresponding photon number |↵|2 and distance between possible fields �
are plotted on the top left inset. The additional dephasing �m(t) due to
the coupling to the resonator, and the ac-stark shift B(t) are shown in the
top right inset. It can be seen that the atom-resonator coupling is negligible
after 50 ns which is the measurement duration in the proposed experiment.

subsection that discrete strong measurements at half-periods
of Rabi oscillations sharpen the noise power peak at Rabi
frequency.

The measurement record observed in an experiment can
be expressed as

J
t

=

p
�(t) h�

z

i
t

+

1

p
⌘
⇠
t

(5)

where ⇠
t

is a Gaussian white noise which represents the
photon shot noise and the separation between field state is

�(t) = |↵
g

(t)� ↵
e

(t)|. (6)

Let us consider Rabi oscillations of frequency ⌦

R

. Starting
from the excited state |ei (corresponding to Z = 1 for the
Bloch sphere coordinates) at time t = 0, we know that in
the absence of any dephasing and relaxation, the trajectories
should pass by Z = 1 at times 2k⇡

⌦R
and by Z = �1 at times

(2k+1)⇡
⌦R

. Similarly to [5], we consider the situation where the
measurement is performed in a discrete manner and on short
time intervals centered around the times where the qubit is
supposed to pass by these two poles (Z = ±1).

Indeed, assuming a resonator’s bandwidth much larger
than the Rabi oscillations frequency ( � ⌦

R

), we perform
the measurement by integrating the output amplitude (5) on
the time intervals I

k

= [

k⇡

⌦R
� ⇡



, k⇡

⌦R
+

⇡



], of length 2⇡/

and centered around the desired Rabi peaks k⇡

⌦R
. The probe

drive is turned on during the first third of these interval I
k

only. The last two thirds of this interval are needed by the

resonator to relax to its vacuum state. The integrated output
over this interval is then given by

J
k

=

p


Z 2⇡/

0
�(t) h�

z

i⇣
t+ k⇡

⌦R
�⇡



⌘ dt+W (

2⇡

⌘
), (7)

where ⌘  1 is the efficiency of the measurement and
W (2⇡/⌘) is a Gaussian random variable with zero mean
and standard deviation

p
2⇡/⌘.

We consider this discrete output signal as a discretization
of a continuous signal with time steps of length ⇡/⌦

R

.
Applying a Discrete Fourier Transform, we can therefore
compute the power spectral density corresponding to this
signal. Let us analyze the effect of the strength of the
measurement on this spectrum through some simulations.
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Fig. 3. Power spectral density for the discrete measurement record; taking
respectively ✏d/2⇡ = 5.5, 11, 22 MHz

Here we take the parameters ⌦

R

/2⇡ = 2 MHz, /2⇡ =

20 MHz, �/2⇡ = 5 MHz, ⌘ = 1, �1/2⇡ = .05 MHz and
�
�

/2⇡ = .1 MHz, corresponding to T1 = 3.18 µs and
T2 = 1.27 µs (see Remarks 2.1 and 2.3 for some details
on the choice of parameters). The simulations of Figure 3
then illustrate the power spectral density of the recorded
discrete signal over 1 ms for ✏

d

/2⇡ ranging from 5.5 to
22 MHz. We observe a net increase of the peak around 2

MHz (Rabi frequency) with the increase of the measurement
strength. Indeed, by quantum Zeno effect, simply reading out
the qubit state refocuses the qubit to the nearest pole of the
Bloch sphere with a good probability, hence overcoming the
dephasing of the qubit to some extent. However, relaxation
events can induce a phase inversion of the Rabi oscillations.
As it will be seen in the next subsection correcting these
phase inversions with a simple feedback based on the result
of this discrete measurement lead to a narrow peak in the
power spectral density at frequency ⌦

R

.
Remark 2.1: The considered qubit relaxation and dephas-

ing times can easily be achieved for instance with transmons
in compact resonators. We choose each measurement dura-
tion to be 50 ns which is a small part of the 250 ns between
two measurements. Choosing a longer measurement duration
would disturb the Rabi oscillations of the qubit by freezing it
along the Z-axis. In order to ensure a measurement duration
as short as 50 ns, we need the resonator’s bandwidth to be
as large as 20 MHz. Indeed, we need such a decay rate
for the resonator to ensure that we are able to entangle the



resonator to the qubit, readout the resonator and let them
get un-entangled through the resonator’s decay to vacuum,
within these 50 ns. Moreover, the bandwidth  does not need
to be larger than the one of the first amplifier. Here, we set
/2⇡ = 20 MHz.

D. Bayesian filter and feedback
In this subsection, based on the above measurement

scheme, we propose a simple feedback strategy allowing to
compensate the dephasing of the qubit and to maintain the
coherence of the Rabi oscillations.

Let us start by providing a simple filter equation that
allows us to estimate the state of the qubit, based on the
integrated measurement outcomes J

k

. Let us take the state
of the qubit (in the Bloch sphere coordinates) after the k’th
measurement to be (X

k

, Y
k

, Z
k

). In order, to estimate the
state after the measurement k+1 we proceed as follows. The
state just before the measurement k+1 can be estimated by

0
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Y �
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⌦
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where S(t1, t2) is a 3 by 3 matrix, solution of the equation
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A dt.

Indeed, since between two measurements we do not include
any information update from the measurement outputs, the
dynamics of the qubit is simply given by the reduced master
equation (4) where the Rabi oscillations of frequency ⌦

R

around the X-axis are further added.
Following, a similar analysis to [8], the state of the qubit

after the measurement number k + 1 can be updated as
follows:
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(9)

where

J =

Z 2⇡/

0

p
�(t)dt.

Remark 2.2: In the strong measurement limit, we can
approximate the above conditional dynamics by X

k+1 =

Y
k+1 = 0 and Z

k+1 as provided. Indeed, in this limit, we
can approximate our measurement as an imperfect projective
measurement. Through the following simulations, we will
apply this simplified filter.
Now, based on the state of the quantum filter at step k, we
consider the simple feedback consisting in a ⇡-pulse around
the X-axis as soon as we observe the opposite phase to the
one we were expecting. Indeed, having started from Z = 1

at t = 0, we expect to have Z
k

⇡ �1 (resp. Z
k

⇡ 1) for k
odd (resp. k even). Then, the feedback consists in applying a
⇡-pulse as soon as we observe Z

k

> 0 for k odd or Z
k

< 0

for k even.
Applying such a feedback algorithm to the discretely

measured qubit with the same parameters as in the previous
subsection, one finds the power spectral density of Figure 4.
The feedback leads to a �-peak at the measurement frequency
(here the same as the Rabi frequency).

Remark 2.3: The considered qubit relaxation and dephas-
ing times are much longer than the typical delays achievable
using present digital electronics like Field Programmable
Gate Array boards. The proposed total feedback loop could
realistically take between 70 and 200ns using this technology.
In these simulations we have considered a feedback delay
of 100 ns (i.e. the possible corrective ⇡-pulses are applied
100 ns after performing the strong measurement). Further-
more, we fix the desired Rabi frequency around ⌦

R

/2⇡ =

2 MHz. This would give us about 250 ns between two
measurements which seems to be enough to perform the
computations of the quantum filter (8)-(9) and therefore to
decide whether we need or not to apply a ⇡-pulse. Note that,
trying to stabilize Rabi oscillations that are much slower than
this would decrease the final fidelity being defined as the
degree of coherence which will be conserved. Indeed, by
decreasing the Rabi frequency, or equivalently by increasing
the interval between two measurements, we loose the control
over the decoherence through this passive period.
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Fig. 4. Power spectral density for the strong measurement record (✏d/2⇡ =
22 MHz); the blue curve corresponds to the open-loop case while the red
curve illustrates the effect of feedback.

We will see in Section III how such Rabi oscillations
whose frequency are fixed by the measurement frequency
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Fig. 5. Scheme of considered setup. The transmon qubit is coupled to two
superconducting resonators. The qubit state can be controlled using a strong
measurement feedback loop connected to the right resonator. The feedback
corrected Rabi oscillations can then be observed independently using the
left cavity, in the weak measurement regime.

can be used to correct the low frequency deviations in driving
RF power.

III. TOWARDS A ROBUST SOURCE OF DRIVING POWER

In the aim of stabilizing a desired Rabi oscillation of
frequency ⌦

R

, we perform the strong measurements with
a period of ⇡/⌦

R

and we apply corrective ⇡-pulses if
necessary. However, the drive amplitude at the input of
the resonator might deviate from the value corresponding
to the Rabi frequency ⌦

R

on time scales that are much
larger than the qubit’s coherence time. Typically, temperature
variations lead to a few percent variations in the emit-
ted power of a commercial source generator. Furthermore,
microwave setups in cryogenic environment can also add
some power fluctuations. This deviation will imply a small
dephasing in the Rabi oscillation of the qubit between two
strong measurements. In order to measure this dephasing
and compensate it by stabilizing the microwave drive, we
consider a second measurement through a second resonator
which is also dispersively coupled to the qubit but is weakly
and constantly driven (Fig. 5).

The measurement record is given by

Jw

t

=

p

w

�
w

h�
z

i
t

+

1

p
⌘
w

˜⇠
t

, (10)

where 
w

is the bandwidth of the second resonator, �
w

is
defined as in (6) but for the coherent field of the second
resonator, ⌘

w

is the detection efficiency of the weak mea-
surement process and the Gaussian white noise ˜⇠

t

is assumed
to be independent from ⇠

t

in (5). Moreover, as we assume
the resonator to be constantly driven in time, we can restrict
ourselves to the steady-state solution of (3) and therefore �

w

is constant in time.

A. Phase-locked loop and Rabi frequency synchronization

Here, we propose a feedback scheme, based on the con-
tinuous weak measurement record, allowing to control the
drive amplitude and therefore, to lock the phase of the Rabi
oscillations. The Figure 6 illustrates the diagram of such
a phase locked loop. This loop consists in a multiplication
of the output record (after a bandpass filter centered at the
desired Rabi frequency) with a sinusoid of desired frequency
⌦

R

and a phase which is chosen to be the same as the one

Jw
t = |�w|h�zit + 1p

⌘ww
⇠̃t

sin(⌦Rt+ �)

k ·
R

⌦

1

Fig. 6. The basic phase-locked loop allowing to lock the phase of the
Rabi oscillations and therefore stabilizing the Rabi drive amplitude. The
weak measurement output signal is first band-pass filtered, then modulated
at the desired Rabi frequency ⌦R with a possible added phase. The resulting
signal is low-pass filtered and integrated with a gain k before being sent to
the microwave source as a power setpoint.

applied for the strong measurement (in practice we need to
calibrate this phase to overcome the phase shift created by the
non-symmetricity of the strong measurement, see Figure 2,
and the delay in the feedback). The result passes then through
a low-pass filter (with a bandwidth much smaller than the
desired Rabi frequency) and finally is integrated to provide
the new drive amplitude to be applied.

The Figure 7 illustrates an overall diagram of the proposed
feedback scheme. A first feedback loop acting on the qubit
and correcting its dephasing by corrective ⇡-pulses is incor-
porated within a second feedback loop correcting (on a much
longer time-scale) the Rabi drive amplitude.
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Fig. 7. Discrete strong measurements Jk are applied to correct the
dephasing of the qubit with corrective ⇡-pulses; a second loop acting at a
much longer time-scale uses a continuous weak measurement record Jw(t)
to correct the deviations in the Rabi drive amplitude.

B. Simulations

The simulations of Figure 8 illustrate 10 runs of the above
phase-locked loop to stabilize the Rabi drive amplitude (and
therefore its induced Rabi frequency ⌦). Having fixed the
period of the strong measurements to 250 ns, we apply
to the weak measurement signal a third order Butterworth
bandpass filter centered at 2 MHz and with a bandwidth
of 1 MHz. The filtered signal is then multiplied by a local
oscillator of frequency 2 MHz with a calibrated phase and



the resulting signal is sent through a third order Butterworth
low-pass filter with a cut-off frequency of 100 kHz. Finally,
the result is integrated with an integration gain of k/2⇡ =

10 Hz. We observe the stabilization of the induced Rabi
frequency ⌦ (with a precision of about 10 kHz) around 2

MHz. This synchronization algorithm can even be used for
slowly varying power setpoints.
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Fig. 8. Stabilization of the Rabi drive amplitude (and therefore its induced
Rabi frequency ⌦) around the frequency given by the strong measurement’s
period (here 250ns). Taking the qubit decay rates of �1/2⇡ = 50 kHz
and ��/2⇡ = 100 kHz, the parameters /2⇡ = 20 MHz, �/2⇡ = 5
MHz, ✏̄d/2⇡ = 22 MHz and ⌘ = 1 for the strong measurement, weak
measurement parameters given by w/2⇡ = 20MHz, |�w| = .2 and ⌘w =
1 and a feedback delay of 100 ns for corrective ⇡-pulses, we ensure the
convergence of ⌦ towards 2000± 5kHz.

IV. CONCLUSION

We have proposed a simple feedback scheme allowing
to maintain coherent oscillations of a qubit. By applying
corrective ⇡-pulses based on the outcome of discrete-in-time
strong measurements, we can correct the phase diffusion of
the Rabi oscillations. Then the output of a second continuous
weak measurement is applied in a second feedback layer
to compensate the deviations in the amplitude of the Rabi
micro-wave drive and to stabilize it around some nominal
value given by the frequency of the strong measurements.
While the second feedback layer is a simple analog phase
locked loop the first one can be implemented in a real-
time experiment using present digital electronics like Field
Programmable Gate Array boards. Simulations based on
realistic experimental parameters illustrate the performance
of the proposed method.

REFERENCES

[1] B. Abdo, F. Schackert, M. Hatridge, C. Rigetti, and M.H. Devoret.
Josephson amplifier for qubit readout. Appl. Phys. Lett., 99:162506,
2011.

[2] H. Carmichael. An Open Systems Approach to Quantum Optics.
Springer-Verlag, 1993.

[3] M. H. Devoret. Quantum fluctuations in electrical circuits. Les
Houches Session LXIII, Quantum Fluctuations, pages 351–386, 1995.

[4] J. Gambetta, A. Blais, M. Boissonneault, A. A. Houck, D. I. Schuster,
and S. M. Girvin. Quantum trajectory approach to circuit qed:
Quantum jumps and the zeno effect. Phys. Rev. A, 77:012112, 2008.

[5] A. N. Jordan and M. Buttiker. Quantum nondemolition measurement
of a kicked qubit. Phys. Rev. B, 71:125333, 2005.

[6] Z. Kim, B. Suri, V. Zaretskey, S. Novikov, K. D. Osborn, A. Mizel,
F.C. Wellstood, and B.S. Palmer. Decoupling a cooper-pair box to
enhance the lifetime to 0.2 ms. Phys. Rev. Lett., 106:120501, 2011.

[7] J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer,
A. Blais, M.H. Devoret, S.M. Girvin, and R.J. Schoelkopf. Charge-
insensitive qubit design derived from the cooper pair box. Phys. Rev.
A, 76:042319, 2007.

[8] A.N. Korotkov. Continuous quantum measurement of a double dot.
Phys. Rev. B, 60(8), 1999.

[9] A.N. Korotkov. Simple quantum feedback of a solid-state qubit. Phys.
Rev. B, 71:201305, 2005.

[10] G. Lindblad. On the generators of quantum dynamical semigroups.
Communications in Mathematical Physics, 48:119–30, 1976.

[11] H. Paik, D.I. Schuster, L.S. Bishop, G. Kirchmair, G. Catelani,
A.P. Sears, B.R. Johnson, M.J. Reagor, L. Frunzio, L.I. Glazman,
S.M. Girvin, M.H. Devoret, and R.J. Schoelkopf. Observation of
high coherence in josephson junction qubits measured in a three-
dimensional circuit qed architecture. Phys. Rev. Lett., 107:240501,
2011.

[12] N. Roch, E. Flurin, F. Nguyen, P. Morn, P. Campagne-Ibarcq, M. H.
Devoret, and B. Huard. Widely tunable, non-degenerate three-wave
mixing microwave device operating near the quantum limit. Phys. Rev.
Lett. To be published.

[13] R. Ruskov and A.N. Korotkov. Quantum feedback control of a solid-
state qubit. Phys. Rev. B, 66:041401, 2002.

[14] C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk,
S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J.-M.
Raimond, and S. Haroche. Real-time quantum feedback prepares and
stabilizes photon number states. Nature, 477:73–77, 2011.

[15] D. I. Schuster, A. Wallraff, A. Blais, L. Frunzio, R.-S. Huang, J. Majer,
S. M. Girvin, and R. J. Schoelkopf. ac stark shift and dephasing of
a superconducting qubit strongly coupled to a cavity field. Phys. Rev.
Lett., 94:123602, 2005.

[16] R. Vijay, M.H. Devoret, and I. Siddiqi. Invited review article: The
Josephson bifurcation amplifier. Rev. Sci. Instrum., 80:111101, 2009.

[17] R. Vijay, D. H. Slichter, and I. Siddiqi. Observation of quantum jumps
in a superconducting artificial atom. Phys. Rev. Lett., 106:110502,
2011.

[18] Q. Zhang, R. Ruskov, and A.N. Korotkov. Continuous quantum
feedback of coherent oscillations in a solid-state qubit. Phys. Rev.
B, 72:245322, 2005.


